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Abstract In contrast to many systems studied in the
field of classical mechanics, models of animal motion
are often distinguished in that they are both highly
uncertain and evolve in a high-dimensional configu-
ration space Q. Often it is either suspected or known
that a particular motion regime evolves on or near
some smaller subset Q0 ⊆ Q. In some cases, Q0

may itself be a submanifold of Q. A general strategy
is presented in this paper for constructing empirical-
analytical Lagrangian (EAL) models of the mechanics
of such systems. It is assumed that the set Q0 ⊆ Q
is defined by a collection of unknown holonomic con-
straints on the full configuration space. Since the ana-
lytic form of the holonomic constraints is unknown,
EAL models are defined that use experimental obser-
vations {z1, . . . , zN } ⊆ QN to ensure that the approx-
imate system models evolve near the underlying sub-
manifold Q0. This paper gives a precise characteriza-
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tion of a probabilistic measure of the distance from the
EAL model to the underlying submanifold.
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1 Introduction

For a large class of example problems of animal biomo-
tionmodels, it is often true that the governing equations
of Lagrangian mechanics define evolutions in a high-
dimensional configuration manifold. For the sake of
argument, suppose that we are only interested in ani-
mal motion models that take the form of multibody
systems comprised of a rigid skeleton connected by
ideal joints. These systems are now a classical topic
in standard texts on multibody dynamics or robotics
[1,2]. Our interest in such models has arisen since they
are critical in constructing Bayesian filters to predict
the motion state from the current state when measure-
ments of animal motion are made via motion capture
[3–5].

Motion capture is a popular technique used in
biomotion studies to quantify the often complex kine-
matics of animal locomotion. One study [6] seeks to
determine the kinematics of the cheetah spine and tail
using both GPS/IMU tracking collars along with rear
facing cameras, which helps to build an understanding
of the whole-body motion. The authors of [7] exam-
ine a gecko body and limb kinematics parameterized
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(a) Bat (b) Lizard

Fig. 1 Motion capture experiments for construction of (left) bat
flight and (right) lizard motion models

by the slope of the surface on which a gecko strides.
The researchers in [8] use motion capture to exam-
ine the kinematics of horse appendages to determine
the effects of different surface conditions on a horse’s
stride. Another study [9] examines the effects of an
orthosis on the three-dimensional limb kinematics of
dogs for differing types of gaits. These experiments
track physical landmarks on the dog limbs as well as
markers placed on the orthosis itself. The researchers
in [10] use motion capture to determine the kinematics
of frog joints during locomotion after freezing in order
to study frog muscle activation patterns post-freezing.

Despite these impressive studies, among animal
motion researchers it is known that some predictive
models can be quite poor [3]. This fact is noted in [11]
for human walking models, and it is dealt with system-
atically in [3–5] in studies of bat flapping flight.

Animal motion models can contain substantial
uncertainties. Specifically, the observations from
motion capture contain no information about the forces,
moments, or parameters that determine the dynam-
ics. This requires researchers often to make very ideal
assumptions and can induce significant uncertainties.
Here a few examples can illustrate how this substan-
tial uncertainty arises. Figures 1, 3, and 6 depict the
results of motion studies by the authors for a bat
in flapping flight and a lizard walking along a rod.
For either of the examples shown in Figs. 3 and 6,
the uncertainties can include: geometric, inertial, and
mass properties of the skeleton; energy loss mecha-
nisms in connective tissues or joints; or suitable force-

displacement models of muscle mechanics. Perhaps
most important to this paper is the fact that joint kine-
matics in biomotion models are far from the ensem-
ble of classical ideal joints such as revolute, prismatic,
spherical, universal, etc. Animal joints have limited
ranges of motion, as well as elastic or inelastic prop-
erties, for example. The exploration of the underly-
ing physical mechanics furthermore is restricted by
the lack of feasible in vivo measuring techniques.
Observing the internal mechanisms of biomotion with-
out harming the animal is beyond current technol-
ogy.

Because of these challenges, investigators have
more recently studied and developed data-driven mod-
els of animal motion. This strategy has arisen in several
papers that seek to develop low-dimensional models
of human walking [12], as well as in recent studies
of bat flapping flight by the authors in [3–5]. Perhaps
the most popular of the general approaches to dimen-
sionality reduction are based on the non-parametric
manifold learning or the estimation methods such as
Gaussian process (GP) techniques, local linear embed-
ding (LLE) [13], or Isomap [14,15]. Popular variants of
the GP methods include Gaussian process latent vari-
able model (GPLVM) [16–18] and the Gaussian pro-
cess dynamical model (GPDM) [19–21] technique. In
the studies by the authors in [3–5,22], it is desired to
construct a low-dimensional model that can be used in
the prediction step of a Bayesian filter that tracks fidu-
cial markers on an animal during motion. It is impor-
tant to note that all of the methods, LLE, Isomap,
GPLVM and GPDM are non-parametric: there is no
underlying model of the physics of the system under
study.

In this paper, we present a principled, data-driven
approach to the generation of Lagrangian models for
such high-dimensional, nonlinear, and uncertain sys-
tems. We refer to a representation generated by the
approach as an empirical-analytical Lagrangian (EAL)
model. The goal of the approach is to (1) exploit as
much knowledge as possible from the geometric struc-
ture of the Lagrangian evolution as encoded in the
known kinetic T and potential energy U , but also to
(2) ensure that the derived model is approximately
faithful to experimental measurements of the systems.
In this sense, the EAL method can be viewed as a
hybrid modeling approach that exploits known infor-
mation that is associated with the Lagrangian geom-
etry, but supplements that information with empiri-
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Probabilistic error bounds on constraint violation 197

cal experimental data. In contrast to Isomap, LLE,
GPLVM and GPDM that are non-parametric estima-
tions methods, EAL method does construct a physics-
based model.

The approach presented here synthesizes results
from learning theory in reproducing kernel Hilbert
spaces (RKHS), penalty approximations of Lagrangian
mechanics, and approximation theory. See [23] for
a discussion of RKHS in Bayesian estimation for a
detailed background. A rigorous treatment of penalty
approximations, viewed as a problem of singular per-
turbation, can be found in [24,25]. Penalty approxima-
tions in Lagrangian dynamics have also been studied
in [26–28].

The EAL method introduced in this paper uses
recent advances in learning theory to construct an
empirical potential function from observations of the
Lagrangian evolution. The potential force generated
by empirical potential function can be seen as an
approximation of unknown constraint force. Essen-
tially, the introduction of the empirical potential in
the Lagrangian equations of motion has the effect of
driving the model trajectory toward the subset or sub-
manifold on (or near) which observations have been
collected. In particular, it can be viewed as a means
of addressing one source of uncertainty: the uncer-
tainty in the feasiblemotions of a particular locomotion
regime.

We have elected in this paper to employ empirical
potentials in a Lagrangian formulation since there is
a general, cohesive theory for enforcing the associ-
ated constraints approximately. The theoretical study
of penalty methods for Lagrangian formulations has a
long history [26,27,29]. There is in principle no restric-
tion to develop such approaches using a Lagrangian
formulation of course. It is conceivable that a sim-
ilar strategy that employs constraint forces derived
from empirical potentials could be based on Newto-
nian methods. The details of such an approach would
exceed the limitations of the current paper, and we
leave such a study as an open problem for future
research.

2 Empirical potentials and biomotion joint models

The discussion above summarizes the general strategy
and goals of this paper. But there are also appealing,
intuitive interpretations of the empirical potential that

is used in the EAL method. In this section, before dis-
cussing the theoretical details of the EAL formulation,
we show in some detail that the approach holds promise
for novel approaches in robot joint design based on
experimental observations of animals. The following
subsections give a concise description of the experi-
mental setup as well as a description of some empirical
potentials estimated from experimental data.

2.1 Bat motion studies

Bat flight motions are highly nonlinear, and they can
exhibit significant self-occlusion during flight. For that
reason, motion study of bats can require an order of
magnitude more cameras than other motion studies.
The bat motion studies in [3–5] use an array of 30
GoProHero 3+ cameras. The cameras are configured in
a bat flight measurement tunnel at the SDU-VT Inter-
national Laboratory depicted in Fig. 2. These cam-
eras are inexpensive and provide sufficient sampling
rate and resolution for motion study. Further, their size
allowsmuchbetter handling and easier placementwhen
compared to bulkier high-speed cameras. However, the
GoPro lenses have a high level of distortion, and it is
crucial to remove the distortion in frames before the
estimation of trajectories of the various marker points
on the bat. After removing the lens distortion, a pinhole
projection camera model has proven sufficient for the
sensor model. Finally, a standard unscented Kalman
filter is used for the estimation of the motion trajectory
of 34 marker points that are placed on the bat as shown
in Fig. 1. Further details on the study can be found in
[3–5].

Fig. 2 The tunnel equipped with an array of GoPro cameras for
recording the flight motion of bats
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Fig. 3 The trajectories of all the joints on the left wing of a bat during a straight level flight motion

Figure 3 illustrates a typical reconstruction of the
marker inertial trajectories obtained from an exper-
iment. As we discuss shortly, such reconstructed
motions are used to identify empirical potential func-
tions.

2.2 Reptile motion studies

Unlike the large array of cameras used to study bat
flight, the lizard motion study in [22] employs only
four Photron FASTCAM cameras. These cameras are
placed surrounding a central tank where the lizard
motion is recorded. Each time the cameras are switched
on to begin recording, a calibration process is per-
formed to determine both the intrinsic parameters of
each camera and its extrinsic parameters, i.e., posi-
tion and orientation of each camera relative to a global
frame. Calibration is achieved using a recording of a
checkerboard pattern of known dimension in different
positions and orientations (Fig. 4).

Before each run, an adult brown anole (Anolis
sagrei), froma captive laboratory population, ismarked
at various points of interest with the intention of track-
ing the trajectory of the points during the lizard’s gait.
Then the lizard is placed on a wooden dowel that rests
diagonally across the central tank. Recording begins
as soon as the lizard starts to crawl and ends once it
reaches the top of the rod. The motion during a typical
experiment is illustrated in Fig. 5. In contrast with the
high occlusion of markers during bat flight, the limbs
of the lizard are consistently exposed throughout the

Fig. 4 Motion capture experiment for a bat performing level
straight flight [30]

Fig. 5 Motion capture experiment for a lizard walking along a
rod
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Fig. 6 The trajectories of all the joints on the left arm of a lizard
during the walking motion
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Fig. 7 The normalized empirical potential representing the
shoulder joint of a bat during straight level flight motion

entire motion study to two cameras at minimum. Con-
sequently, stereo triangulation is used to easily deter-
mine most marker locations in inertial space. Triangu-
lation of each marker is carried out using Hedrick’s
DLTdv digitizing tool [31]. A representative trajec-
tory of the markers during an experiment is depicted
in Fig. 6.

2.3 Empirical potential functions

Figure 7 depicts the empirical potential Vε derived
from video observations of a bat during a straight and
level flight. The figure depicts Vε(q) when the elbow
is fixed at the origin and q := (q1, q2) is the location
in R

2 of the wrist. The normalized empirical function
Vε depicts both the range and preferred configurations
of the bat elbow during this motion regime. Similarly,
Fig. 8 depicts a typical empirical potential function
derived from the inertial trajectories of the markers on
the anole lizard. The qualitative resemblance, and sub-
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Fig. 8 The normalized empirical potential representing the
elbow joint of a lizard during crawling motion
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Fig. 9 The normalized strain energy of a prototype nonlin-
ear joint designed to (approximately) realize the experimentally
derived potential in Fig. 7

tle differences, of the two empirical potential functions
for the bat and lizard elbows are striking.

Figure 9 illustrates the strain energy of a large
displacement, nonlinear truss structure that has been
designed to emulate the motion permitted in Fig. 7.
The strain energy depicted is U := U (q), where again
q = (q1, q2) is the position of the wrist and the elbow
is fixed at the origin. Our work in progress includes
optimization of the strain energy of physical systems
that define a joint to approximate the empirical poten-
tials derived directly from experimental observations
of motion. These examples emphasize that the empir-
ical potentials Vz that characterize joint motions illus-
trate the mechanics of the feasible motions of a joint
graphically. As studied in much more details in refer-
ence [3–5], they also can serve as the foundation for
the synthesis of robot joints, even those that can be
realized by 3D printing, as illustrated in Fig. 10. In
the rest of this paper, we study the theoretical sense
in which Lagrangian models based on the empiri-
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Fig. 10 The prototype of the nonlinear joint manufactured with
3D-printing to realize the empirical potential in Fig. 7 [30]

cal potentials Vz can approximate holonomically con-
strained Lagrangian systems.

3 Overview of results

3.1 Constrained Lagrangian mechanics and penalty
methods

We assume that the motion of a Lagrangian system in
the configuration manifold Q := R

d is subset to m
holonomic constraints φi : Q → R for i = 1, . . . ,m.
We define the submanifold Q0 = {q ∈ Q : φi (q) =
0, i = 1, . . . ,m} and refer to Q and Q0 as the full and
constrained motion manifolds, respectively.

Lagrange’s equations for the dynamics of the holo-
nomically constrained mechanical system are com-
monly written as

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+ ∂U

∂q
+ ∂φ

∂q

T

λ j = Θ, (1)

φ(q) = 0, (2)

with the generalized coordinates q(t) ∈ R
d , the con-

straintsφ(q(t)) ∈ R
m , the kinetic energy T = T (q, q̇),

the potential energy U = U (q), and the generalized
force Θ(t) ∈ R

d . In the form given above, this sys-
tem constitutes a collection of (d + m) second-order
differential-algebraic equations in the (d+m) variables
(q, λ) [24]. These equations may also be understood as
one coordinate realization of Lagrange’s constrained
dynamics on a smooth manifold, as described in [32–
34]. From the perspective of differential geometry, the
Lagrange’s equations of motion of dynamical systems
with constraints can be established on the configura-

tion manifold in the coordinate-free manner. Let Q
denote the configuration manifold. It has been proven
that the equations of motion expressed in any coordi-
nate chart of Q are equivalent to the ones established
with q(t) ∈ R

d , the generalized coordinates. A fair
amount of technical machinery is required to give a
full account of the associated coordinate-free formu-
lations of the Lagrangian mechanics on the tangent
bundle T Q, or of the Hamiltonian mechanics on the
cotangent bundle T ∗Q. For the purposes of this paper,
we simply assume that the families of approximate tra-
jectories discussed below remain in the domain of a
single coordinate chart, which simplifies the analysis
substantially.

Equations 1 and 2 must be solved simultaneously to
obtain the motion trajectories t �→ q(t) and multiplier
trajectories t �→ λ(t). An alternative means to obtain
approximations of the constrained motion trajectories
is based on penalty methods for Lagrangian mechan-
ics. Penalty approximations of such constrained sys-
tems have been studied for many years [25,27–29].
These methods assume that there is a description of
the admissible motion submanifold

Q0 = {q ∈ Q | φ(q) = 0} (3)

in terms of the level set of a nonnegative function V :
R
d → R

+,

Q0 := {q ∈ Q | φ(q) = 0} = {q ∈ Q | V (q) = 0} .

(4)

The penalized approximation of the constrained
Lagrangian system described by Eqs. 1 and 2 is then
given by the solutions qε of the equations

d

dt

(
∂T

∂ q̇

)
− ∂T

∂q
+ ∂U

∂q
+ 1

ε2

∂V

∂q
= Θ. (5)

The function 1
ε2
V can be thought of as a “effective con-

straining potential” that drives the system trajectories
toward the submanifold as ε → 0. Under some non-
trivial sufficient conditions that we discuss more fully
below, it can be argued that the trajectories qε of Eq. 5
converge to the trajectories qλ of Eq. 1. A typical con-
vergence result has the form

sup
t∈[0,T ]

‖qλ(t) − qε(t)‖ � ε, (6)
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that is, the error is uniformly bounded by ε over the time
interval [0, T ]. In this paper, we write a � b if there is
a constant c (that we do not particular care about) such
that a ≤ c · b.

Ensuring this state error convergence is hardly easy,
and we summarize some sufficient conditions briefly
here for completeness. The proof of the error bound
in 6 can be subtle, and the interested reader is referred to
[24,29] for the details. It is perhaps simplest to summa-
rize the analysis in [29], which is presented in Hamil-
tonian form. Suppose that a d × d mass matrix m(q)

is given, and it is uniformly positive definite, smooth,
and symmetric. When T = 1

2 q̇
T m(q)q̇ , reference [29]

shows that the trajectories of the penalty formulation
converge to those of a system that has the effective
Hamiltonian He = 1

2 p
Tm−1 p +U (q) + W (I, q) and

is subject to the constraints φ(q) = 0. Note that the
effective Hamiltonian He includes a correction term,
W (I, q) = ∑m

k=1 Ikωk(q) where ωk for k = 1, . . . ,m
are referred to as frequencies and I = (I1, . . . , Im)

are the associated actions. The term W (I, q) does not
appear in the Lagrangian form with multipliers for
holonomically constrained system. Suppose the fol-
lowing assumptions hold,

(A1) the initial conditions are sufficiently close to the
constrained submanifold,

(A2) the frequencies ωk satisfy non-resonance condi-
tions, and

(A3) the mass matrix satisfies tangency conditions
defined in terms of the submanifold.

Under these conditions, references [24,29] show that
‖qλ(t) − qε(t)‖ ≈ O(ε).

3.2 Empirical-analytical Lagrangian models

In this paper, we assume that the system of interest
is subject to the governing Eqs. 1 and 2, but we do
not have an analytic form of the constraint φ(q) = 0.
Thus, it is not possible in this case to implement Eqs. 1
and 2 in simulation. Instead, we are given observations
{z1, . . . , zN } ∈ QN from experiment of the state q
collected during a motion regime of interest. That is,
we assume that there is a Lagrangian submanifold that
underlies a particular motion regime (such as walk-
ing, running, straight and level flight, etc) and collect
observations of the system trajectories as they evolve.
These observations are taken to be independent and

identically distributed random samples having proba-
bility distribution ρ : Ω → [0, 1]. In practice Ω is
taken to be a compact subset of the configuration space
Ω ⊆ Q. Instead of Eq. 4, we assume that there is a
potential function Vρ = Vρ(q), which is parameterized
in terms of themeasure ρ, whose level set characterizes
the submanifold of admissible configurations in

Q0 = {q ∈ Q | φ(q) = 0} = {
q | Vρ(q) = 0

}
.

The subset Q0 is the support of the measure ρ. Now
a model of the system, one that does not depend on
explicit knowledge of the constraints, can be con-
structed by choosing V = Vρ in Eq. 4.

Unfortunately, such a strategy is not yet realizable
in computations since the probability measure ρ is
unknown. This is the defining feature of distribution-
free learning theory [35], a framework that is essential
to this paper.We instead construct an empirical approx-
imation Vz := Vz(q) of Vρ that depends on the samples
z = {z1, . . . , zN }. The final, realizable approximation
of the unknown system then is given by solutions of
the unconstrained equations

d

dt

(
∂T

∂ q̇

)
− ∂T

∂q
+ ∂U

∂q
+ 1

ε2

∂Vz
∂q

= Θ. (7)

The construction of the empirical potential Vz is some-
what lengthy and discussed in Sect. 6. The primary the-
oretical results in this paper are found in Theorems 1, 2
and 3. The first theorem starts with the analysis of the
accuracy confidence function in Eq. 8. Theorem 2 pro-
vides a succinct and useful measure of error in expec-
tation over samples. Both of these theorems yield error
characterizations that differ significantly from those in
reference [36]. Finally, in Theorem 3, we show that Vρ

and Vz can be interpreted as measures of the deviation
of the trajectories qε,ρ and qε,z from the submanifolds
underlying their associated penalized Lagrangian sys-
tems. We say that these quantify the constraint viola-
tion, or in other words, describe the distance of a tra-
jectory to the underlying submanifold of constrained
motions. In both cases, these measures of constraint
violation are O(ε2).

Theorem 1 Let ρN be the product measure ρ ⊗ · · · ⊗
ρ on ΩN , and suppose Vρ is defined in terms of a
reproducing kernel K that satisfies the approximation
property in Definition 1. Then we have an accuracy
confidence bound
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ρN

{
sup
q∈Q

∣∣Vj (q) − Vz(q)
∣∣ > η

}

≤
{
1 if η ≤ ηcr

2e
− 1

32 N
(
λM j −λM j+1

)2
η2

if η > ηcr

(8)

with N the number of samples, ηcr := 8
√
N (λMj −

λMj+1),
{
λ j

}
j=1,...,∞ the sequence of eigenvalues

associated with Vρ in Eq. 13, and λMj denoting the
eigenvalue at which the spectral approximation Vj of
Vρ is truncated.

Admittedly, while this bound takes a moment to
unpack, it is general and useful in generating other
bounds that have a simpler form. In Theorem 2, we
find how the accuracy confidence function is used to
derive other bounds having a simpler form.

Theorem 2 Suppose that the hypotheses of Theorem 1
hold. Then we have

EρN

(
sup
q∈Q

∣∣Vj (q) − Vz(q)
∣∣
)

≤ C√
N (λMj − λMj+1)

(9)

for some constant C > 0.

Also, the accuracy confidence function is a key result
that enables decomposition of the error into approxima-
tion error (or bias) and probabilistic error (or variance).
The use of accuracy confidence functions for such an
error decomposition is studied in detail in [35], among
other places.

The probability bound encoded in the accuracy con-
fidence function has another important pragmatic inter-
pretation. It relates the measures of constraint violation
summarized in Theorem 3

Theorem 3 Let qε,ρ be the solution of the penalized
Lagrange’s equation in Eq. 1whenwe choose V = Vρ,
and let qε,z be the solution of the penalized Lagrange’s
equation in Eq. 7 with V = Vz. If the system is natural,
we have the uniform bounds on constraint violation

Vρ

(
qε,ρ(t)

)
� ε2 (10)

Vz
(
qε,z(t)

)
� ε2 (11)

Since these potentials are nonnegative, they can be
viewed as defining measures of the distance of the
approximate solution to the underlying manifold of
admissible configurations.

The above bound can be used to study in what sense
the empirical solutions qε,z approximate solutions qε,ρ .
However, it remains an open question to investigate
when it is true that qε,z approximates the solutions qλ

of the constrained system in Eq. 5. The assumptions
(A1),(A2), and (A3) that are known to be sufficient
for the convergence of solutions qε of Eq. 5 to qλ are
complex and difficult to guarantee in the simplest of
cases when an analytic expression for the constraints
are known. This paper is predicated on the assump-
tion that we do not know the constraints. Additionally,
the probability measure ρ that dictates concentration
of samples in Ω is assumed unknown. This is a stan-
dard assumption that underlies distribution-free learn-
ing theory, oneof the primary theoretical underpinnings
of our approach. Since Vρ is expressed via an infinite
summation of unknown eigenfunctions that depend on
ρ, it is impossible to verify conditions (A1), (A2), and
(A3), at least in their usual form.

The remainder of this paper provides the background
and details to derive Theorem 1. We carry out detailed
simulations that investigate the convergence properties
and stability of the approximate penalized system. In
Sect. 4, we review the fundamental definitions from the
theory of reproducing kernel Hilbert spaces (RKHS)
that are used to construct our approximations. The role
of the operators TK and Tρ in constructing our potential
function Vρ is discussed.While Vρ cannot be computed
in practice, its empirical approximation Vz is discussed
in Sect. 6 in terms of the empirical operator Tz . Sec-
tion 6 introduces the limiting potential Vρ , its eigen-
function approximation Vj , and its empirical approxi-
mation Vz in terms of the operators TK , Tρ , and Tz .

4 Reproducing kernel Hilbert spaces

The approximation of empirical potentials, which are
used to modify the analytic expression for the gov-
erning equations, are obtained using learning theory
in reproducing Kernel Hilbert Spaces. A Hilbert space
H defined over a domain Ω is defined in terms of a
continuous kernel function K : Ω × Ω → R that is
symmetric and positive definite in the sense that
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Probabilistic error bounds on constraint violation 203

I∑
i, j=1

K (xi , x j )αiα j > 0

for all {xi }i∈I ⊆ Ω and nonzero vectors α :=
{α1, . . . , αI }T = 0. By convention, the function
Kx (·) := K (x, ·) is referred to as the kernel function
centered at x, and the inner product of any two such ker-
nel functions is defined to be (Kx , Ky)H := K (x, y).
The RKHS H is then defined to be the completion of
the finite linear span of the set of functions {Kx }x∈Ω

with respect to this inner product. With this setup, it is
known for any f ∈ H , we have

(Kx , f )H = f (x)

for all x ∈ Ω . This identity is known as the reproducing
property of the kernel K in the RKHS H . There are
many well-known examples of possible kernels K on
Ω a subset of Rd and a good description of the most
popular choices can be found in [37].

In our applications, we will assume that we collect
a sample of observations z = {z1, . . . , zN } ⊆ Ω that
are independent and identically distributed according
to some unknown probability measure p on Ω . The
probability measure p is understood intuitively as a
description of where samples in z concentrate in Ω .
For example, in a human walking experiments, it is
pictured that samples are concentrated on a small set
or submanifold Q0 of the full configuration space Q.
Under some fairly simple hypothesis (see [38] or [39]),
it can be shown that every function in H is continuous
and

H ⊂ C(Ω) ⊂ L2
μ(Ω).

For instance, the rightmost inclusion above holds if the
measure μ(Ω) is finite, and the left inclusion holds if
there is a c > 0 such that

sup
x∈Ω

|K (x, x)| ≤ c < ∞.

In fact more can be said about these inclusions. Since
H ⊂ C(Ω), we define the injection mapping IK :
H → C(Ω) as IK : f ∈ H → IK ( f ) = f ∈ C(Ω).

sup
x∈Ω

|K (x, x)| ≤ c < ∞

The requirement above implies that the norm of the
operator IK is uniformly bounded, that is, ||IK f ||C(Ω)

≤ || f ||H . In addition, the operator IK is compact in
this case [36]. We can calculate the adjoint I ∗

K of IK
from the identity

(IK Kq , g)L2(Ω,ρ) = (Kq , I
∗
K g)H

= (I ∗
K g)(q)

=
∫

Ω

Kq(y)g(y)ρ(dy).

We then introduce the mapping TK : L2(Ω, ρ) →
L2(Ω, ρ) to be TK := IK I ∗

K , which yields

TK g : = IK I ∗
K g

= IK

∫
Ω

K (·, r)g(r)ρ(dr)
︸ ︷︷ ︸

∈H

=
∫

Ω

K (·, r)g(r)ρ(dr)
︸ ︷︷ ︸

∈L2(Ω,ρ)

.

We next define Tρ := I ∗
K IK whichmaps Tρ : H → H .

Both TK and Tρ are self-adjoint compact operators
since IK is a compact embedding. By virtue of the spec-
tral theory for self-adjoint compact operator [11,40],
the eigenvalues of TK and Tρ are the same can only
accumulate at zero. By convention, they are ordered
in a nonincreasing extended enumeration that includes
multiplicities, λ1 ≥ λ2 ≥ · · · ≥ 0. When we denote by
{ψ j }∞j=1 and {φ j }∞j=1, the eigenvalues of Tρ and TK ,
respectively, spectral theory guarantee that

Tρg =
∞∑
j=1

λ j (g, ψ j )Hψ j in H,

TK f =
∞∑
j=1

λ j ( f, φ j )L2(Ω,ρ)φ j in L2(Ω, ρ),

I ∗
K f =

∞∑
j=1

σ j ( f, φ j )L2(Ω,ρ)ψ j in H,

for each f ∈ L2(Ω, ρ) and g ∈ H . The j th singular
value of I ∗

K is define by σ j := √
λ j , and it can be shown

that ψ j = σ jφ j almost everywhere in Ω [36].
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5 The discrete operator Tz

In our problem, Tρ and TK are integral operators. They
map Tρ : H → H and TK : L2(Ω, ρ) → L2(Ω, ρ),
so they act between infinite-dimensional Hilbert spaces
in general. Our goal is to construct a suitable com-
putable approximation Tz of Tρ . The construction of
Tz takes several steps. We define a sampling operator

Sz : H → R
N , Sz( f ) :=

⎧⎪⎨
⎪⎩

f (x1)
...

f (xN )

⎫⎪⎬
⎪⎭ ∈ R

N .

Many of the properties of this sampling operator are
studied in [38]. We can easily compute the adjoint of
the sampling operator by its definition (Sz f, x)RN =
( f, S∗

z x)H when H is a reproducing kernel Hilbert
space. It follows that the adjoint S∗

z : RN → H with

S∗
z

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1
y2
...

yN

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
N∑
i=1

yi Kzi ,

when the samples z = {z1, z2, . . . , zN } ⊆ Ω ⊆ Q.
The discrete operator Tz is defined as

Tz = Sz S∗
z

N
= 1

N
K (zi , z j ) = K

N
. (12)

The matrix K is the learning matrix with Ki, j =
K (zi , z j ) and zi represents the i th data point in the
data set.

6 Empirical potential functions

The discrete evolution laws studied in this paper are
constructed by using an empirical potential function
Vz that drives the discrete state to evolve near the sub-
set Ω ⊂ Q. Since the analysis in this paper extends
the error bounds in [36], we adopt its notation in this
section. We define the empirical potential function Vz ,

its “infinite sample” limit Vρ , and its approximation Vj

due to spectral filtering via the expressions

Vρ(q) := 1 − (T †
ρ TρKq , Kq)H , (13)

Vz(q) := 1 − (gλ(Tz)TzKq , Kq)H , and (14)

Vj (q) := 1 − (gλ(Tρ)TρKq , Kq)H . (15)

for all q ∈ Ω ⊆ Q where the filter function gλ is
selected to be the spectral filtering function such that
gλ(ξ) = 1 if ξ > λ, and gλ(ξ) = 0 otherwise. Terms
such as gλ(Tp) are interpreted in the sense of the func-
tional calculus of operators, see [41]. More general
choices of gλ are discussed in [36]. This reference intro-
duces the following smoothness prior that is used to
establish Theorem 1 in this paper.

Definition 1 We say that the kernel K and probability
measure ρ satisfy the smoothness prior provided

sup
q∈Ω

‖T−s/2
ρ PρKq‖2H ≤ Cs,

for some constant Cs > 0 and s > 0 where Pρ is the
projection operator onto the range of Tρ .

The remainder of this section proves Theorem 1.

Proof of Theorem 1 We begin by using the triangle
inequality to derive a bound for the difference between
the empirical and limiting potential function Vρ and Vz .

∣∣∣∣Vz(q) − Vρ(q)

∣∣∣∣
≤

∣∣∣∣Vz(q) − Vj (q)

∣∣∣∣ +
∣∣∣∣Vj (q) − Vρ(q)

∣∣∣∣
=

∣∣∣∣
((

gλ(Tz)Tz − gλ(Tρ)Tρ

)
Kq , Kq

)
H

∣∣∣∣︸ ︷︷ ︸
term 1

(16)

+
∣∣∣∣
((

gλ(Tρ)Tρ − T †
ρ Tρ

)
Kq , Kq

)
H

∣∣∣∣︸ ︷︷ ︸
term 2

. (17)

that yields expressions for two terms. We set up our
analysis of each term in this section by recalling several
results from [36]. The first term in Eq. 17 satisfies
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∣∣∣∣
((

gλ(Tz)Tz − gλ(Tρ)Tρ

)
Kq , Kq

)
H

∣∣∣∣
≤ 2

λMj − λMj+1

∥∥Tz − Tρ

∥∥
HS , (18)

which is found in [36]. The same reference shows that

∥∥Tρ − Tz
∥∥
HS ≤ 2(δ ∨ √

2δ)√
N

(19)

with probability at least 1 − 2e−δ from Lemma 1 of
[36].

holds for all sample z that lie in a set having probabil-
ity (or measure) at least 1− 2e−δ . When gλ(·) denotes
the spectral truncation between eigenvalues λMj and
λMj+1 , which is λMj+1 < λ j < λMj , the Schmidt
expansion of gλ(Tp) implies that

∣∣∣∣
((

gλ(Tρ)Tρ − T †
ρ Tρ

)
Kq , Kq

)
H

∣∣∣∣
=

∞∑
j=λM j+1

(PρKq , ψ j )
2
H ≤ λsM j+1

Cs . (20)

The rightmost inequality above is a result of the
smoothness prior in Definition 1. We obtain an upper
bound on the inequality in Eq. 17 by combining the
expression in Eqs. 17, 6, 19, and 20.

sup
q∈Ω

∣∣Vz(q)−Vρ(q)
∣∣≤ 4(δ ∨ √

2δ)√
N (λMj −λMj+1)

+Csλ
s
M j+1

.

(21)

The inequality illustrates the dependency of the right
hand side on a probabilistic term that is proportional to
1√
N

and a deterministic term that depends on λMj+1 .
We discuss the balance of these terms in more detail
after this section.

Now we show how the inequality in Eq. 21 can be
expressed in terms of an accuracy confidence function
in the style of approximation theory as in reference
[35]. To this end, we begin by writing

sup
q∈Q

∣∣Vρ(q) − Vz(q)
∣∣ ≤ Csλ

s
M j+1

+ η (22)

which holds for all the samples z that are not contained
in the “set of bad samples”.

It is easily shown that this inequality is equivalent
to that in Eq. 21 when we set

η = 4(δ ∨ √
2δ)√

N (λMj − λMj+1)
. (23)

We then have

η =
⎧⎨
⎩

4δ√
N (λM j −λM j+1 )

if δ ≤ 2

4
√
2δ√

N (λM j −λM j+1 )
if δ > 2

which is identical to

δ =
{ 1

4

√
N (λMj − λMj+1)η if η ≤ ηcr

1
32N (λMj − λMj+1)

2η2 if η > ηcr

with the definition ηcr := 8
√
N (λMj ).

We therefore conclude that

ρN

{
sup
q∈Q

∣∣Vj (q) − Vz(q)
∣∣ > η

}

≤
{
1 if η ≤ ηcr

2e
− 1

32 N
(
λM j −λM j+1

)2
η2

if η > ηcr

(24)

��

7 Interpretation of empirical potential energy
error in terms of bias and variance

Equation 22 is important to interpret the use of the accu-
racy confidence function. This inequality states that

sup
q∈Q

∣∣Vρ(q) − Vz(q)
∣∣ ≤ Csλ

s
M j+1︸ ︷︷ ︸

Approximation
Error (bias)

+ η︸︷︷︸
Probabilistic

Error (variance)

(25)

for all samples z outside the set ofΛ j,N (η) of bad sam-
ples. The accuracy confidence function measures the
size of the set of bad samples in a probabilistic sense.
The decomposition of the error into bias and variance
is a classical topic in learning and approximation the-
ory, see [35] or [42]. It gives rise to the typical trade-off
that appears in Fig. 11 in the form of a “V”-shaped plot.
On this plot of trajectory error versus 1

ε2
, the right is

dominated by the approximation error that decreases
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Fig. 11 Double logarithmic plot: spectral filtering parameter
versus the norm of constraint violation. The curves are calculated
from cases with different values of penalty factor, ε, with noise
imposed. A typical “V”-shape curve appears when the learning
model becomes more complicated

(super)linearly on the log-log plot. The left side of the
plot increases linearly due to the dominance of the vari-
ance. Optimal estimates are obtained by equilibrating
these two contributions, a topic discussed in detail in
[35], which yields errors located near the minimum of
the “V”-shape.

As emphasized in [35], the utility in estimates of
the form in Eq. 24 is that this expression gives a suc-
cinct description of the interplay between the number
of samples and approximation error. It is quite useful in
deriving bounds for the expectation of the error that is
given in Theorem 2. We establish this inequality next.

Proof of Theorem 2 We calculate the expectation by
integrating the accuracy confidence function: it depends
on the distribution function of the error ‖Vj −Vz‖C(Q).

EρN

(
sup
q∈Q

∣∣Vj (q) − Vz(q)
∣∣
)

=
∫
Q

ρN

{
z : sup

q∈Q
∣∣Vj (q) − Vz

∣∣ > η

}
dη

=
∫ ηcr

0
1dη +

∫ ∞

ηcr

2e−N (λM j −λM j+1 )2η2dη

≤ C√
N (λMj − λMj+1)

for some constant C > 0. ��

Proof of Theorem 3 In general, the kinetic energy of a
finite-dimensionalLagrangian system (when expressed

in terms of a specific choice of coordinate chart) can
be decomposed into three terms.

T = T (t, q, q̇) = T2(t, q, q̇)+T1(t, q, q̇)+T0(t, q, q̇)

(26)

that are quadratic in, linear in, and independent of q̇ ,
respectively. A system is said to be natural, or T2, if
T1 = T0 = 0. When a system is unforced and natural,
it is well-known that the Hamiltonian H is conserved.
That is, for our systems

H(t) = T (q(t), q̇(t)) +U (q(t)) + 1

ε2
Vρ (q(t))

= T (q(0), q̇(0)) +U (q(0)) + 1

ε2
Vρ (q(0))

= H0

Under the assumption that q(0) is on the submanifold,
which holds only if Vρ (q(0)) = 0, it follows that

1

ε2
Vρ (q(t)) ≤ T (0) +U (0)

Vρ (q(t)) � Cε2 ��

8 Numerical experiments

In this section, we present a detailed numerical study
for some prototype examples to verify and validate the
major theoretical results of this paper. These examples
are based on a pendulum on a plane, a spherical pendu-
lum in the 3D space, and the simulation of the motion
of the elbow joint of an anole lizard. We consider first
motion of a pendulum inR2 shown in Fig. 12a. A mass
m is connected to the origin by a massless bar whose
length is r = 1m. Additionally, the mass is subject to
gravity. In this prototype example, the only constraint

(a) (b)

Fig. 12 Diagrams of pendulum and samples
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is that the distance between the mass and the origin is
constant. Now assume that the analytical form of con-
straints is unknown (or partially unknown) to us, which
is the common situation in biomotion studies. In this
way, it is impossible to derive the dynamical equations
from the classical Lagrange’s equations with multipli-
ers. However, we suppose that we have observations of
motions available from experiments. The EAL model
provides a form for incorporating the experimental data
into the formulation of Lagrange’s equations for the
uncertain system. The empirical potential function is
constructed from the data and serves as an additional
term in the equations of motion. This term provides
an effective potential driving the model such that the
trajectory evolves near the submanifold of motion.

8.1 EAL model of pendulum

For the simplest planar pendulum, the constraint on
distance between the mass and the origin is denoted by
φ = √

x2 + y2 − 1 = 0. Following the convention in
the homogenization theories of singular perturbation
[25], the constraint is used to define the generalized
coordinates q1 = r = √

x2 + y2. The angular coordi-
nate θ is defined as the “free” coordinate. In this way,
the coordinates of the system are q = [r, θ ]�. We write
the Lagrangian and constraints of the system as follows
in Eqs. 27 and 28,

L = T − V = 1

2
m(ṙ2 + r2θ̇2) − mgr sin θ, (27)

φ(q) = r − 1 = 0. (28)

The dynamical model of the pendulum can be derived
by substituting the kinetic energy, potential energy, and
the constraint into Lagrange’s equations. The actual
trajectory qλ is obtained by integrating this system
of differential-algebraic equations (DAEs). The mass
starts moving at the initial condition of q0 = [r0, θ0]�,
which is assumed to lie on the admissible configura-
tion submanifold. The samples {z1, . . . , zN } used for
constructing the empirical potential function are taken
along the actual trajectory, as is shown in Fig. 12b.
In order to study the performance of the EAL model
under different noise distributions, two sets of samples
are simulated: (1) measurements free from noise, and
(2) measurements with uniformly distributed additive
noise. Specifically, themeasurements are of the follow-
ing form.

z(ti ) = [1 + �r(ti ), θ(ti )]
� ∈ R

2,

�r ∼ U
(

− δ

2
,
δ

2

)
, δ ≥ 0,

with U(a, b) denoting the uniform distribution over
[a, b].

As mentioned in Sect. 6, these measurements are
used for constructing the empirical potential function
Vz(q). Here we demonstrate the construction for this
specific example. Reference [36] contains more details
about the properties of the constructed function Vz(q).
The Gaussian kernel function is defined by the expres-
sion K (x, y) = exp(−β‖x − y‖2), where β is chosen
and fixed inwhat follows. The empirical potential func-
tion follows from Eq. 14, which is written as

Vz(q) = 1 − Kz(q)�gλ(K)Kz(q) (29)

where Kz(q) = [K (z1, q), . . . , K (zN , q)]� and Ki, j

= [K (zi , z j )] for i, j = 1, . . . , N . The expression
of gλ(·) denotes the spectral filtering operator that
acts on matrices. We write the eigenvalue decompo-
sition of matrix K as K = V DV�, where matrix D
denotes the diagonal matrix of eigenvalues {σi } of K,
and the matrix V is the corresponding orthonormal
matrix of eigenvectors. Then the spectral filtering oper-
ator gλ(·) can bewritten explicitly in terms of the scalar
function.

ḡλ(σ ) =
{
1/σ σ ≥ λ

1/λ 0 < σ < λ
(30)

With ḡλ(σ ) defined as above, the spectral filtering oper-
ator is given as

gλ(K) = 1

N
V

(
D̄

N

)
V� (31)

with D̄ = diag(ḡ(σ1), . . . , ḡ(σN )).
Figure 13 shows how the coordinates in the EAL

model and the actual model propagate under the same
initial conditions, which is set as r0 = 1 and θ0 = π/6.
The results in Fig. 13 are typical of EAL methods in
several respects. The response trajectory qε,z contains
both slowly and rapidly oscillating components. The
coordinate q1 = r is nearly a constant since the ideal
constraint is q1 = r = 1, or φ = q1 − 1. The approx-
imate trajectory can be viewed as oscillating rapidly
about the underlying submanifold.
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Fig. 13 The trajectories of both the actual and homogenization
models within 10s. The spectral filtering parameter, number of
samples, and penalty factors are set as λ = 10−6, N = 400, and
1/ε2 = 2 × 105

8.2 Convergence rate of EAL model

Since the actual dynamic model of the pendulum is
known clearly, we can compare the trajectories qε,z(t)
generated by the EAL model and the trajectory qλ(t)
satisfying the actual dynamic model to verify the
fidelity of the EAL method. The norm of the differ-
ence of the two trajectories in the space of continuous
functions, ‖qλ − qε‖C[0,T ], serves as the error metric.
In general, the size of error is due to several parameters
that arise in the empirical model, which will be dis-
cussed shortly. Another important attribute that needs
to be examined is the effect of integration error, because
the trajectories of both models are obtained via numer-
ical integration. Our numerical study provides insights
about how these combinations of attributes affect the
accuracy of the model.

We have defined qε,ρ(t) as the trajectory generated
by Lagrange’s equations that are expressed in terms of
1
ε2
Vρ and qε,z(t) as the trajectory of the corresponding

equation in terms of 1
ε2
Vz . The empirical potential Vz

approximates Vρ , which is unknown since the distribu-
tion ρ is unknown. If ρ were known, and the assump-
tions A1, A2 and A3 in Sect. 3 hold, it is established in
homogenization methods for singular perturbation that
[25]

‖qλ − qε,ρ‖C[0,T ] = O(ε) (32)

with qλ the trajectory of Lagrange’s equations with
multipliers in Eqs. 1 and 2. Ideally, we would hope
in the best possible scenario that

‖qλ − qε,z‖C[0,T ] ≤ ‖qλ − qε,ρ‖C[0,T ]
+ ‖qε,ρ − qε,z‖C[0,T ]

≈ O(ε) (33)

Our numerical experimentswill predominantly study
two measures of convergence. From Eq. 33, we can
derive the relation between the logarithmof error bound
and the penalty factor 1/ε2, which is shown in the fol-
lowing equation. This relation will be useful for the
following illustration.

log10‖qλ − qε,z‖C[0,T ] ≤ −1

2
log10

(
1

ε2

)
+ C (34)

Therefore, if we run the simulation for a same case
multiple times with different penalty factors, and plot
the constraint violation as a function of the penalty fac-
tor in a log–log figure, the slope of the curve will reflect
the speed of convergence with respect to the penalty.
We will see in the following figures that the constraint
violation converges to a curve below the reference line
whose slope equals to − 1

2 , as predicted by Eq. 34.
The analysis above describes a best possible per-

formance, but in practice the approximation Vz of Vρ

depends on several parameters. The parameters deter-
mining the learning process are the spectral filtering
parameter λ, number of samples N , the final integra-
tion time T , and the distribution of the additive noise.
We perform several synthetic experiments in which
only one of these parameters is varied. By examining
the convergence rate with respect to ε, we are able to
tell how a specific parameter qualitatively affects the
error bounds of the EAL model. In the remainder of
this section, numerical results are presented to illus-
trate the effects of various simulation parameters on
the order of error. The example of planar pendulum
described in the previous subsection is used to illustra-
tion. In each simulation, a single parameter is varied
based on a general case, in which the parameters are
λ = 10−6, N = 400, β = 3, and T = 5 × 10−2 s.

We first study the influence of the spectral filtering
operator, which is parameterized byλ. By the definition
specified in Eq. 30, a smaller λ implies more of the
original eigenvalues of a modal expansion of Vρ are
retained. From Fig. 14a, b, we can see that to the left
all the curves are below the reference linewith the slope
1
2 . This indicates that the order of constraint violation
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Fig. 14 Double logarithmic
plot: penalty factor versus
the norm of constraint
violation. The curves are
calculated from cases with
different values of spectral
filtering parameter, λ. The
slope of reference line is − 1
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Fig. 15 Double logarithmic
plot: penalty factor versus
the norm of constraint
violation. The curves are
calculated from cases with
different number of
samples, N . The slope of
reference line is − 1
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is bounded by at least the same order of ε guaranteed
in Eq. 34.

On the other hand, with the filtering operator
gλ employed to learn the empirical functions, some
plateaus appear to the right in both Fig. 14a, b as ε

approaches zero, i.e., as the penalty factor approaches
infinity. That means the penalty model with empirical
potential reaches a limit of accuracy. The limit depends
on both the noise and the choice of λ. Increasing the
penalty factor does not result in a smaller error bound
in some cases. In the cases shown in Fig. 14a, the
empirical potential functions are learned from samples
without noise. As λ decreases, i.e., more information
from Vρ is retained, the limit on accuracy gets smaller
accordingly. While in the cases where measurements
are noisy, as is shown in Fig. 14b, the decrease in
error as λ decreases reaches a limit that depends on
the noise. This phenomenon can be explained by the
conclusions from approximation theory. As discussed
following Eq. 25, the error has the characteristic “V”-
shape associated with decomposition of the error into
bias and variance. For a range of ε to the right in each
plot, the convergence rate is the same as in Eq. 34. As

the penalty 1
ε2

increases to the right in each plot, the
effect of probabilistic error in the sampling operator
becomes significant.

Next we study the influence of the number of sam-
ples N . According to the probabilistic error bound
given in Eq. 9, the expectation of error bound decreases
asmore samples are used in the empirical potential. Fig-
ure 15 shows the results from cases with different num-
bers of samples. When exact, noise-free measurements
are assumed, as is shown in Fig. 15a, the error curves
of all cases overlap with each other. The curve is below
the reference line, which implies the convergence rate
follows the trend observed in given by homogenization
theory for singular perturbation. On the other hand, all
the curves reach similar limits when the measurements
are affected by noise. As predicted in Eq. 9, the limiting
error bound is smaller in the cases with more samples.

Integrator error is another important topic in this
discussion. In many problems, there exists no closed-
form solution, so a numerical integrator is usually the
only way to study such dynamical systems. Essen-
tially, a numerical integrator approximates the continu-
ous dynamical systems with a set of discrete difference
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Fig. 16 Double logarithmic plot: penalty factor versus the norm
of constraint violation. The curves are calculated from cases with
different integration final time, T , without noise. The slope of
reference line is − 1
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Fig. 17 Double logarithmic plot: penalty factor versus the norm
of constraint violation. The curves are calculated from cases with
different integration final time, T , with noise. The slope of ref-
erence line is − 1

2

equations. The numerical solution might not propagate
exactly on the submanifold generated by constraints,
which introduces cumulative error in the calculated tra-
jectory. Therefore, the error in numerical integration
needs to be considered and examined in simulations.
Figures 16 and 17 show the effect of final integration
time on convergence rate. A non-variational integra-
tor, specifically a 4th-order Runge–Kutta method, is
employed with the step size set as h = 10−4 s. With
the same integrator and same integration step size,
we conduct simulations for cases with different final
times. The integration error accumulates as the final
time increases of course. The qualitative trends for both
cases with and without noise imposed are quite close
to those in which the spectral filtering parameter λ is
decreased.

Fig. 18 Diagram of spherical pendulum

So far, we have studied in detail the errors associated
with several parameters that arise in the EAL method
for a two-dimensional system. We have likewise stud-
ied the EAL model of a spherical pendulum, which is
shown in Fig. 18. In this example, the Cartesian coor-
dinates of the mass are chosen as the generalized coor-
dinates. Specifically q = [x1, x2, x3]�.

The Lagrangian and constraints of the spherical sys-
tem are given as follows.

L = T − V = 1

2
m

(
ẋ21 + ẋ22 + ẋ23

)
− mgx3 (35)

φ(q) = x21 + x22 + x23 − 1 = 0 (36)

In all simulations, we observe the same qualita-
tive behavior of the dependence of the error on the
parameters ε, λ, T , and noise distribution. For exam-
ple, Fig. 19 depicts the cases when different spectral
filtering parameters λ are applied. The measurements
in Fig. 19a are exact, and the measurements in Fig. 19b
are noisy. Figure 19c shows the typical “V”-shape curve
whenmore original eigenvalues ofmodal expansions of
Vρ are retained.We see that these plots are qualitatively
similar to the simulations for the planar pendulum in
Figs. 14 and 11.

In our final example, we use experimental obser-
vations of the inertial motion of markers on the anole
lizard in Figs. 1b, 5, and 6 to construct an EAL model
of the lizard’s wrist joint with respect to the elbow joint.

In this example, only the relativemotion is modeled.
That is, an empirical potential function is constructed
by first calculating the difference between the motion
markers attached at the elbow and wrist during a typi-
cal motion regime. The dynamics of the relativemotion
are generated using an effective Lagrangian that has the
form L = T − V with T = 1

2m(ẋ2 + ẏ2) and V = 0.
As depicted in Fig. 20, the family of penalized mod-
els indexed by ε, λ give a good representation of the
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Fig. 19 The simulation results of three-dimensional spherical
pendulum. Different spectral filtering parameters λ are applied
in the simulations. Other parameters used in the cases are N =
400, β = 15, T = 5×10−2 s. (a) and (b) depict the convergence

rates of the cases with exact measurements and noisy measure-
ments. The slope of reference line is − 1

2 . (c) depicts the typical
“V”-shape curve that appears when the learning model becomes
more complicated
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Fig. 20 The positions of a lizard’s wrist joint with respect to
the elbow joint in the shoulder-elbow-wrist plane. The samples
are taken from a short clip of the lizard’s crawling motion. The

curve is the trajectory of the EAL model constructed from the
displayed samples with different penalty factors

relative motion. As ε is decreased, the motion remains
close to an underlying submanifold. While this model
constitutes a preliminary study of just the relative joint
motion, it conveys important information regarding the
range of motion and distribution of motion about the
submanifold. An expanded study of the inertial motion
of the full bioskeletal system is in development by the
authors.

9 Conclusions

This paper has introduced a novel, data-driven strategy
for the construction of empirical-analytical Lagrangian
(EAL) models. This class of models has been moti-
vated by high-dimensional, uncertain systems such as

those that often arise in constructing predictors for
Bayesian estimation of animal motion. The method is
based on using experimental observations {z1, . . . , zN }
of the system to construct penalty formulations that
approximate dynamics of holonomically constrained
Lagrangian models. The primary theoretical contribu-
tion of the paper is the derivation of an accuracy confi-
dence function that is used to measure the distance of
the approximate trajectories to the admissible configu-
ration submanifold in terms of the number of samples
N and penalty parameter ε. The form of the accuracy
confidence function enables the interpretation of the
error between approximated trajectories and the admis-
sible submanifold as a combination of bias and variance
terms. The numerical studies carefully assess a num-
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ber of properties of the formulations including rates of
convergence, modal truncation effects, spectral filter-
ing, and accumulation of integration error.

An important open question suggested by this paper
is to extend the convergence results of singular pertur-
bation, which depend only on the penalty parameter ε,
to the case in which the penalization term depends on
ε and the number of samples N . So far, the numerical
studies suggest that the empirical trajectories follow
some of the same trends as the trajectories associated
with homogenization of singular perturbation prob-
lems. Also, the current paper limits consideration to
animal motion models that consist of rigid bioskeletal
models. Many animal motion studies observe signifi-
cant flexible body effects.While the theory in this paper
can be extended in principle to this case, the details of
such a formulation remain an important topic for future
study.
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