
Appendix 

DERIVATION OF MULTIVARIATE VARIANCE-COMPONENTS MODEL 

Here we present a simplified derivation of a multivariate version of Willham’s (1963, 1972) 

variance-components model. The standard version of this model assumes that the vector of 

phenotypes (z) can be partitioned into additive genetic (a) and environmental components 

(e), or 

 

𝐳 = 𝐚𝑑 + 𝐚′𝑚 + 𝐞𝑑 + 𝐞′𝑚, (A1) 

 

where subscript d denotes the direct effects of an individual’s genes or environment, and 

subscript m denotes genetic and environmental maternal effects. (For simplicity, we ignore 

dominance and epistasis here.) In equation (A1) and below, primes denote that the value of 

the maternal components come from a different individual, i.e., the mother. An underlying 

assumption of equation (A1) is that the phenotype of the grandmother does not affect the 

offspring’s phenotype except via direct transmission of genes. Such an effect may either 

arise from what is defined in the text from what is defined in the text as a “cascading 

maternal effect,” or less likely, from a direct grandmaternal effect. Willham (1972) 

considered a more complex model incorporating a cascading maternal effect into a 

grandmaternal effect term. 

The vector of total breeding values, which represent an individual’s total heritable 

contribution to the population mean (Bijma et al. 2007), can be written as  

 

𝐀 = 𝐚𝑑 + 𝐚𝑚.  (A2) 

 

Note the absence of a prime on the maternal breeding value in equation (A2): the maternal 

breeding value reflects an individual’s expected maternal contribution to its own offspring 

rather than the phenotypic effect of its own mother (Willham 1963; Bijma 2006). The 

variance of total breeding values is thus 

 

𝐆𝐴 = 𝐆𝑑𝑑 + 𝐆𝑑𝑚 + 𝐆𝑚𝑑 + 𝐆𝑚𝑚 (A3) 

 

where Gij is a variance-covariance matrix when i = j and a square matrix of covariances 

when i ≠ j. 

To derive a predictive expression for the response to selection for maternally 

affected traits, we assume that relative fitness (w) can be expressed as linear function of 

phenotypes, with the strength of directional selection on each character z represented by a 

selection gradient β (Lande and Arnold 1983). Expressed as a vector equation, 

 

𝑤 = α + 𝐳T𝛃 + ε, (A4) 

 



where α and ε are intercept and error terms, respectively, T denotes transposition, and β is 

a vector of selection gradients. We ignore maternal selection (Kirkpatrick and Lande 1989) 

here; extensions incorporating it are straightforward (Kirkpatrick and Lande 1992; 

Hadfield 2012). Using Price’s (1970) equation, ∆�̅� = Cov(𝐀, 𝑤), the change in phenotypic 

means after one generation can be represented as 

 

∆�̅� = Cov(𝐀, 𝐳T)𝛃. (A5) 

 

Substituting equations (A1) and (A2) into (A5) and taking the covariance leads to equation 

(1) in the text (cf. McGlothlin et al. 2010).  

 

TRANSLATION BETWEEN VARIANCE-COMPONENTS AND TRAIT-BASED MODELS 

In the trait-based model, the vector of phenotypes can be written as  

 

𝐳 = 𝐚 + 𝐞 + 𝐌𝐳′, (A6) 

 

where a is a vector of additive genetic values, e is a vector of environmental effects, and M 

is a square matrix of maternal effects coefficients. Likewise, the total breeding value can be 

written as 

 

𝐀 = 𝐚 + 𝐌𝐀 = (𝐈 − 𝐌)−1𝐚 = (𝐈 − 𝐌𝐌)−1(𝐚 + 𝐌𝐚), (A7) 

 

where I is the identity matrix. The variance of breeding values is 

 

𝐆𝐴 =  (𝐈 − 𝐌)−1𝐆(𝐈 − 𝐌T)−1 = (𝐈 − 𝐌𝐌)−1(𝐆 + 𝐆𝐌T + 𝐌𝐆 + 𝐌𝐆𝐌T)(𝐈 − 𝐌T𝐌T)−1. (A8) 

 

To translate between the two frameworks, we begin by setting equal the terms of equation 

(A3) and (A8) following McGlothlin and Brodie (2009), finding 

 

𝐆𝑑𝑑 = (𝐈 − 𝐌𝐌)−1𝐆(𝐈 − 𝐌T𝐌T)−1  (A9a) 

 

𝐆𝑑𝑚 = (𝐈 − 𝐌𝐌)−1𝐆𝐌T(𝐈 − 𝐌T𝐌T)−1  (A9b) 

 

𝐆𝑚𝑑 = (𝐈 − 𝐌𝐌)−1𝐌𝐆(𝐈 − 𝐌T𝐌T)−1 (A9c) 

 

𝐆𝑚𝑚 = (𝐈 − 𝐌𝐌)−1𝐌𝐆𝐌T(𝐈 − 𝐌T𝐌T)−1. (A9d) 

 

These equations allow us to calculate the parameters of the trait-based model from the 

more readily estimable terms of the variance-components model: 

  

𝐌 = 𝐆𝑚𝑑𝐆𝑑𝑑
−1 (A10a) 



 

𝐆 = (𝐈 − 𝐌𝐌)𝐆𝑑𝑑(𝐈 − 𝐌T𝐌T), (A10b) 

 

(cf. McGlothlin and Brodie [2009], equation 14). Equations (A9-A10) assume that all traits 

that mediate maternal effects have been measured. 

 To translate between equations for response to selection in the two frameworks, we 

first express Willham’s model in the terms of Kirkpatrick and Lande’s model by 

substituting (A9) into (1): 

 

∆�̅� = (𝐈 − 𝐌𝐌)−1(𝐆 +
1

2
𝐆𝐌T + 𝐌𝐆 +

1

2
𝐌𝐆𝐌T)(𝐈 − 𝐌T𝐌T)−1𝛃 . (A11) 

 

By a simple algebraic manipulation, the asymptotic trait-based model (equation 5) can be 

rewritten in a similar form. Because any matrix can be multiplied by I without altering it, 

and because multiplying any invertible matrix by its inverse yields I, it is possible to 

express equation (5) as 

 

∆�̅� = (𝐈 − 𝐌)−1[(𝐈 + 𝐌)−1(𝐈 + 𝐌)]𝐆[(𝐈 +
1

2
𝐌T)(𝐈 +

1

2
𝐌T)−1](𝐈 −

1

2
𝐌T)−1𝛃 (A12), 

 

where the quantities inserted into equation (5) are enclosed within brackets. Expansion 

and rearrangement yields equation (9) in the text.  
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 Table S1. The maternal effects matrix (M), recalculated as described in the text from Galloway et al. 

(2009). Elements reveal the effect of specific maternal traits on offspring trait expression. All traits 

were transformed as described in the text, but were not standardized as in Galloway et al. (2009). 

                                                                    Maternal  

 Days to germ. Rosette size Days to flower Biomass 

Days to germ. 0.216 0.054 -0.705 0.268 

Rosette size -0.747 -0.654 0.610 0.611 

Days to flower -0.247 0.025 -0.289 0.250 

Biomass -0.279 0.011 0.073 -0.214 

 

 

Table S2. Selection gradients (β) for ln days to flower for four selection lines (two early flowering, E1 

and E2, and two late flowering, L1 and L2) each selected for three generations. 

           Selection line  

Generation of 

selection E1 E2 L1 L2 

1 -4.83 -2.41 6.56 3.32 

2 -6.94 -7.68 6.15 7.65 

3 -7.97 -14.14 9.32 11.76 
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Table S3. Estimate of the additive genetic (co)variance matrix (G) for four traits using an animal model 

(ASReml 3.0) that ignored maternal effects.  

 Days to germ. Rosette size Days to flower Biomass 

Days to germ. 0.02307    

Rosette size -0.14386 1.51804   

Days to flower 0.00617 -0.05802 0.01568  

Biomass 0.00839 -0.08689 0.02070 0.03391 

 

 

Table S4. Estimate of the additive genetic (co)variance matrix (G) for four traits calculated using 

equation (A10b) and results from Table S1 and Galloway et al. (2009, Table 3a). 

 Days to germ. Rosette size Days to flower Biomass 

Days to germ. 0.00460    

Rosette size -0.02897 0.29551   

Days to flower 0.00174 0.00243 0.00768  

Biomass 0.00159 -0.00150 0.01072 0.02334 

 

 

 

 

 


