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Maternal effects can dramatically influence the evolutionary process, in some cases facilitating and in others hindering adaptive

evolution. Maternal effects have been incorporated into quantitative genetic models using two theoretical frameworks: the

variance-components approach, which partitions variance into direct and maternal components, and the trait-based approach,

which assumes that maternal effects are mediated by specific maternal traits. Here, we demonstrate parallels between these

models and test their ability to predict evolutionary change. First, we show that the two approaches predict equivalent responses

to selection in the absence of maternal effects mediated by traits that are themselves maternally influenced. We also introduce a

correction factor that may be applied when such cascading maternal effects are present. Second, we use several maternal effect

models, as well as the standard breeder’s equation, to predict evolution in response to artificial selection on flowering time in

American bellflower, Campanulastrum americanum. Models that included maternal effects made much more accurate predictions

of selection response than the breeder’s equation. Maternal effect models differed somewhat in their fit, with a version of the

trait-based model providing the best fit. We recommend fitting such trait-based models when possible and appropriate to make

the most accurate evolutionary predictions.

KEY WORDS: Artificial selection, breeder’s equation, life-history evolution, natural selection, parental effects, quantitative

genetics.

Mothers often influence the phenotype of their offspring above

and beyond the contribution of genes (Dickerson 1947; Mousseau

and Fox 1998; Wolf and Wade 2009). For example, substances

such as nutrients, antibodies, and hormones may be transmitted

to offspring via the placenta, egg, or seed, with consequences

for offspring growth and development (Roach and Wulff 1987;

Schwabl 1996; Grindstaff et al. 2003; Maestripieri and Mateo

2009). In addition, mRNA transcribed from the maternal genome

is used to make proteins during early development before many

of the offspring’s own genes become active (Telford et al. 1990).

Maternal effects have the potential to profoundly affect the evo-

lutionary process when they influence traits linked to offspring

fitness (Kirkpatrick and Lande 1989; Bernardo 1996; Mousseau

and Fox 1998).

Maternal effects have been suggested to both facilitate and

hinder adaptation. Examples of adaptive maternal effects are often

responses to environmental cues; if the offspring’s environment is

predictable, maternal induction of phenotypes that will thrive in

that environment should be favored by selection (Riska et al. 1985;

Rossiter 1996; Donohue and Schmitt 1998; Fox and Mousseau

1998; Lacey 1998; Galloway 2005; Galloway and Etterson 2007).

The ability to alter offspring phenotypes in response to environ-

mental conditions may facilitate colonization of and adaptation

to new habitats (Fox and Savalli 2000; Badyaev et al. 2002;

5 4 9
C© 2013 The Author(s). Evolution C© 2013 The Society for the Study of Evolution.
Evolution 68-2: 549–558



J. W. MCGLOTHLIN AND L. F. GALLOWAY

Duckworth 2009). Conversely, genetic maternal effects are of-

ten expected to slow adaptive evolution (Donohue 1999; Räsänen

and Kruuk 2007; Hoyle and Ezard 2012). Maternal genetic ef-

fects often act in opposition to direct genetic effects, effectively

reducing the additive genetic variance available to selection. This

phenomenon can be quantified by the direct–maternal genetic cor-

relation. This correlation displays a wide range of values across

studies of captive and wild organisms, but tends to be negative

more often than positive (Riska et al. 1985; Robinson 1996; Byers

et al. 1997; Thiede 1998; Wilson and Reale 2006; Räsänen and

Kruuk 2007). Negative direct–maternal correlations are expected

to be favored in relatively stable environments, where they act

to stabilize a population in the face of short-term fluctuations in

directional selection (Hoyle and Ezard 2012).

When attempting to understand how a population will re-

spond to selection, identifying and quantifying maternal effects is

crucial, as was realized by animal breeders as early as the 1940s

(Dickerson 1947). Quantitative genetic models incorporating ma-

ternal effects, which were first developed by animal breeders

and subsequently adopted and extended by evolutionary biolo-

gists, can be classified into two categories: variance-components

and trait-based models (McGlothlin and Brodie 2009; Hadfield

2012). The first category of models, associated primarily with

Dickerson (1947) and Willham (1963, 1972), partitions genetic

variance into direct and maternal components. In these models,

the response to selection is a function of the direct and ma-

ternal variance components and the direct–maternal covariance.

By contrast, in trait-based models, which were originally devel-

oped by Falconer (1965) and later elaborated by Kirkpatrick and

Lande (1989), maternal effects are attributed to specific traits in

the mother. Trait-based models generally allow for more com-

plexity, such as time lags in evolutionary response to selection

(Kirkpatrick and Lande 1989). Such time lags occur because se-

lection in the maternal generation can cause phenotypic change

through two distinct pathways: by altering the genes passed on

to offspring and by altering the distribution of traits that cause

maternal effects.

Recent work has shown that variance-components and trait-

based models make equivalent predictions for models of indirect

genetic effects that occur within generations (i.e., social genetic

effects). Parameters estimated using a variance-components ap-

proach may be used to calculate crucial parameters of trait-based

models (McGlothlin and Brodie 2009), and the predictive equa-

tions for evolutionary response are translatable between frame-

works (McGlothlin et al. 2010). Although maternal effects are

simply indirect genetic effects that occur across generations (Wolf

et al. 1998), it is unclear whether a similar equivalence between

modeling approaches exists for maternal effects. (Parallels have

been demonstrated for special cases, e.g., Kirkpatrick and Lande

1989; Hadfield 2012.) Although Kirkpatrick and Lande’s M, a ma-

trix that quantifies the effects of maternal traits on offspring traits,

can indeed be calculated from empirical estimates of variance-

components from the variance-components framework (Galloway

et al. 2009; McGlothlin and Brodie 2009), the general relationship

between the predictive equations for response to selection remains

obscure. In particular, because variance-components models do

not explicitly account for time lags in evolutionary response, it is

unclear under what conditions the two types of models make the

same predictions.

This article has two primary aims. First, we examine the sim-

ilarities and differences between variance-components and trait-

based models of maternal effects and demonstrate that under cer-

tain conditions, the two frameworks predict equivalent responses

to selection. We introduce a correction factor that can be applied

when the assumptions of the variance-components model are not

met. Second, we test the utility of various maternal effect mod-

els for predicting selection response using data collected from

two experiments in American bellflower, Campanulastrum amer-

icanum. The first of these studies applied artificial selection to

a single life-history trait, days to flower (Burgess et al. 2007),

and the second estimated genetic parameters for days to flower

and three additional traits (Galloway et al. 2009). Because genetic

parameters and response to selection were estimated from inde-

pendent data sets, we can use these data to ask how well different

models of maternal effects predict observed evolutionary change.

We compare the accuracy of several quantitative genetic models

of maternal effects, including both variance-components and trait-

based models. To examine the consequences of ignoring maternal

effects when they are present, we also compare the predictions

of maternal effect models to those of the standard multivariate

breeder’s equation (Lande 1979; Lande and Arnold 1983).

Theory
In this section, we draw a general parallel between the two primary

models of maternal effects. We rely heavily upon the approach

of McGlothlin and Brodie (2009; McGlothlin et al. 2010; see

also Bijma 2013), which we extend to show that the variance-

components and trait-based models of maternal effects produce

similar equations for the response to natural selection. Most of the

mathematical detail is presented in the Supplementary Appendix.

VARIANCE-COMPONENTS MODELS

In variance-components models (e.g., Willham 1963, 1972), total

genetic variance is partitioned into direct and maternal compo-

nents and the covariance between them. The maternal components

reflect the total contribution of maternal performance to expres-

sion of the offspring phenotype, without attributing these effects

to a specific maternal trait. In its generalized multivariate form,
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the predictive equation for response to selection in this framework

can be written as

�z̄ = (Gdd + 1

2
Gdm + Gmd + 1

2
Gmm)β. (1)

(See the Supplementary Appendix for derivation.) In equation (1),

�z̄ is a column vector representing evolutionary change in the

population mean between the parental and offspring generations,

Gdd is a variance-covariance matrix of direct genetic effects, Gdm

and Gmd are covariance matrices between direct and maternal

genetic effects, Gmm is a variance-covariance matrix of maternal

genetic effects, and β is a vector of selection gradients (Lande and

Arnold 1983).

Two important assumptions of Willham’s model are that ma-

ternal performance is neither under selection nor itself influenced

by maternal effects. As we will see later, these assumptions are

relaxed in trait-based models, creating important differences be-

tween the two frameworks (see also Cheverud 1984; Hadfield

2012).

TRAIT-BASED MODELS

Kirkpatrick and Lande’s (1989) trait-based model differs from

Willham’s in that maternal effects are assumed to be mediated

by specific traits of the mother. In a multivariate framework, this

mediation is represented by M, a square matrix of maternal ef-

fect coefficients mij. These maternal effects coefficients quantify

the effect of maternal trait j on offspring trait i. Kirkpatrick and

Lande (1989) derive two equations for response to selection (see

also Hadfield 2012). The first explicitly accounts for time lags in

evolutionary response that arise due to effects of selection in the

maternal generation:

�z̄(t) = (Caz + MP) β(t) + M�z̄(t − 1) − MPβ(t − 1).

(2)

Here, time t represents the current generation, time t – 1 is

the maternal generation, P is the phenotypic variance-covariance

matrix, and Caz is a matrix of covariances between additive genetic

values and phenotype, which Kirkpatrick and Lande show can be

estimated at equilibrium by

Caz = G
(

I − 1

2
MT

)−1

, (3)

where G is the additive genetic variance-covariance matrix, I is

the identity matrix, and T denotes matrix transposition. (Note that

the Kirkpatrick–Lande model ignores dominance and epistatic

contributions to genetic variance, as do the other models discussed

here.)

The complexity of equation (2) arises primarily because se-

lection alters the distribution of traits that mediate maternal ef-

fects before reproduction, leading to a partial generational lag

between selection and evolutionary response (Kirkpatrick and

Lande 1989). The first two components of equation (2) are due

to selection in the current generation, including a change in the

genetic component (Cazβ(t)) and a purely phenotypic change in

the maternal component (MPβ(t)). The next term (M�z̄(t − 1))

represents a change in the maternal contribution in the current

generation due to evolution in the previous generation, and the

final term represents the loss of the purely phenotypic change in

the maternal contribution caused by selection in the previous gen-

eration (MPβ(t − 1)). The evolutionary lags caused by selection

in the previous generation are of most concern when selection dif-

fers from generation to generation, that is, when β(t) �= β(t − 1)

and �z̄(t) �= �z̄(t − 1). Rearranging equation (2) as

�z̄(t) = (I − M)−1(Cazβ(t) + MPδ(β) − Mδ(�z̄)), (4)

where δ represents a difference between generation t and genera-

tion t − 1, makes this dependence clear.

Kirkpatrick and Lande’s (1989) second equation to estimate

selection response makes the simplifying assumption that selec-

tion and thus the rate of evolution remains constant across genera-

tions, that is, δ (β) = 0 and δ (�z̄) = 0. (This is also an assumption

of the variance-components model, which includes a selection

gradient for only a single generation.) Under this assumption,

response to selection is predicted by

�z̄ = (I − M)−1Cazβ = (I − M)−1G
(

I − 1

2
MT

)−1

β (5)

Kirkpatrick and Lande (1989) note that when selection is

constant, the rate of evolution predicted by equation (5) will be

approached asymptotically after a number of generations. Equa-

tion (5) may thus be a reasonable approximation in periods of

relatively constant selection.

The extent to which the time-lag models (eqs. (2), (4)), and

the asymptotic model (eq. (5)) make similar predictions depends

upon the extent to which the assumptions of constancy of selection

and the rate of evolution are valid. Because the effects of these

both depend upon M, the importance of explicitly considering

time lags will depend upon the strength of maternal effects as

well. As an illustration, consider a single trait model with maternal

effect coefficient m. Making the additional assumptions that the

change in selection is constant each generation and that the change

in evolutionary rate each generation depends only on the change

in selection, equation (4) may be written as

�z̄time−lag = Gβ

(1 − m) (1 − m/2)
+ m Pδ(β)

(1 − m)

− mGδ(β)

(1 − m)2 (1 − m/2)
. (6)

The ratio of the prediction made by the time-lag model and

that by the asymptotic model (a one-trait version of eq. (5)) is
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then

�z̄time−lag

�z̄asymptotic
= 1 + m

δ(β)

β

(
(1 − m/2)

h2
− 1

(1 − m)

)
, (7)

where h2 is narrow-sense heritability, the ratio of G to P. It is

evident from equation (7) that the extent to which the two models

differ in their predictions depends upon three parameters: heri-

tability, the strength and direction of the maternal effect (m), and

the relative difference in the strength and direction of selection

between generations (δβ/β). For a representative heritability of

0.5, there is a large parameter space where the two models make

similar predictions (Fig. 1). However, for very strong maternal ef-

fects and/or very large differences in selection across generations,

the predictions of the two models diverge. The divergence be-

tween the two models is also more pronounced when heritability

is lower (not shown).

CORRESPONDENCE BETWEEN FRAMEWORKS

At first glance, the expressions for predicted response to selection

presented in the two frameworks appear quite distinct. However, it

is possible to show correspondence between variance-components

and trait-based models of within-generation indirect genetic ef-

fects by expressing them in a common mathematical language

(McGlothlin and Brodie 2009), suggesting maternal effect mod-

els are likely to display underlying similarities as well. Because

the trait-based model includes only a single selection gradient, we

will focus on the correspondence of equation (1) with equation

(5), Kirkpatrick and Lande’s asymptotic model. We thus ask how

similar the trait-based and variance-component approaches are

when selection is treated as constant across generations.

By applying the translations given in the Supplementary Ap-

pendix (eqs. A9a–A9d), it is possible to express equation (1) as

�z̄ = (I − MM)−1

(
G + 1

2
GMT + MG + 1

2
MGMT

)

(I − MTMT)−1β. (8)

Kirkpatrick and Lande’s asymptotic equation (5) can be ex-

pressed in a similar form by a simple algebraic manipulation given

in the Supplementary Appendix, yielding

�z̄ = (I − MM)−1

(
G + 1

2
GMT + MG + 1

2
MGMT

)

(
I − 1

4
MTMT

)−1

β. (9)

The resemblance between equations (8) and (9) is striking:

they differ only by the multiplier 1
4 in the penultimate factor. Thus,

the response to selection predicted by the two equations will be

similar when MM is small relative to I and will be identical when

MM = 0. In the latter case, equations (8) and (9) reduce to

�z̄ =
(

G + 1

2
GMT + MG + 1

2
MGMT

)
β. (10)

The discrepancy between the two models appears to arise

from the neglect of what may be called “cascading maternal

effects” in the standard variance-components model. Cascading

maternal effects occur when a trait mediating a maternal effect

is itself influenced by a maternal effect in the previous genera-

tion. As a result, an offspring’s phenotype becomes dependent

upon not only the phenotypes of its own mother, but also those

of its grandmother, its great-grandmother, and so on. Falconer’s

(1960) result for litter size in mice, which led to the develop-

ment of the trait-based model (Falconer 1965), is a classic case

of cascading maternal effects: females born in large litters tend

to produce relatively small litters. Mathematically, whenever cas-

cading maternal effects are present, MM will be nonzero, and thus

the simplest version of the variance-components model will make

predictions that are not equal to those of the trait-based model. In

the absence of such cascades, MM = 0, and the trait-based and

variance-components models should be equivalent. A nonzero

MM may occur either when maternally affected traits cause ma-

ternal effects themselves (i.e., when any diagonal element of M is

nonzero) or when maternally affected traits influence a different

trait in the next generation (i.e., when particular combinations of

off-diagonal elements of M such as m12 and m21 are nonzero).

As noted earlier, Willham’s original (1963) formulation of

the variance-components model assumes the absence of cascad-

ing maternal effects (Hadfield 2012). By contrast, this condition

is built into the trait-based model (Kirkpatrick and Lande 1989;

Hadfield 2012). Willham’s later (1972) model addressed the prob-

lem by incorporating cascading maternal effects into grandmater-

nal variance components. In empirical applications, however, this

formulation introduces the problem of estimating a large number

of additional parameters that may not be estimable in most data

sets. An alternative approach is to introduce a correction factor to

the variance-components model that will allow it to make correct

predictions when cascading maternal effects are present. Exami-

nation of equations (5) and (6) suggests that this correction factor

should be

K = (I − MTMT)

(
I − 1

4
MTMT

)−1

(11a)

or equivalently,

K = (
I − G−1

dd GdmG−1
dd Gdm

) (
I − 1

4
G−1

dd GdmG−1
dd Gdm

)−1

(11b)

(see the Supplementary Appendix for details). The modified ver-

sion of Willham’s predictive equation that includes a correction
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Figure 1. Ratio of evolutionary predictions made by two versions (time-lag and asymptotic, see text) of Kirkpatrick and Lande’s trait-

based maternal effect model as a function of the maternal effects coefficient (m) and the relative difference in the selection gradient

across generations ( δ(β)
β

, see eq. (7)). Heritability is set at h2 = 0.5. In the relatively flat central region of the graph, the models are roughly

equivalent (ratio ≈ 1), but the models diverge as maternal effects and/or differences in selection become stronger.

for cascading maternal effects is

�z̄ =
(

Gdd + 1

2
Gdm + Gmd + 1

2
Gmm

)
Kβ. (12)

The effect of including K tends to be to reduce the predicted

rate of evolution when compared to the uncorrected variance-

components model. Unless the elements of M are very large, this

reduction will be relatively modest. As an illustrative case, con-

sider a single trait model where the maternal trait influences the

expression of the same trait in the offspring. Here, the correction

factor K will equal 1−m2

1−(m2/4) . By definition, m ranges between −1

and 1 (Kirkpatrick and Lande 1989), so K will range from 0 to

1. Interestingly, at modest values of m, the difference between

the uncorrected and corrected models is not large; for example,

when m = ±0.2, the correction factor equals 0.97. Employing the

correction becomes increasingly crucial as cascading maternal

effects become stronger; for example, at m = ±0.7, the correc-

tion factor equals 0.58, indicating that the uncorrected variance-

components model severely overestimates the response to

selection.

Empirical Methods
As demonstrated earlier, the performance of maternal effect mod-

els for making predictions from empirical data sets should de-

pend upon both the nature of maternal effects and selection in

a given system. Comparing these models is thus essentially an

empirical question. In this section, we use experimental data to

evaluate the utility of quantitative genetic models of maternal ef-

fects for predicting response to selection. We ask how well the

predictions of each model correspond to empirical measurements

of selection response from an artificial selection study. Specifi-

cally, we evaluate the importance of including maternal effects

in general, cascading maternal effects, and variation in selection

across generations in predictive models. We also compare the fit

of variance-components vs. trait-based models.

To address these questions, we used parameters estimated

from two independent studies of genetics and selection in C. amer-

icanum to fit six models, including the maternal effect models

discussed earlier. Quantitative genetic parameters for four traits

derive from a breeding design that allowed estimation of mater-

nal genetic effects (Galloway et al. 2009). The genetic parameters

from this study, which were estimated for transformed traits (nat-

ural log for all traits except rosette size, which was square-root

transformed), may be found in Galloway et al. (2009; Gdd, Table

3a; Gmm, Table 3b; Gdm = Gmd
T, Table 3c). In Galloway et al.

(2009), M was calculated using mean- and variance-standardized

traits to facilitate comparisons among traits. To use M in the pre-

dictive equations here, we recalculated it for unstandardized traits

using equation (A10a; Table S1).

In a separate study of the same population, three genera-

tions of artificial selection were applied to one of these traits,

days to flower, in four replicate selection lines (Burgess et al.

2007). Two lines were selected for early flowering (E1 and E2),
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and two were selected for late flowering (L1 and L2). In each

generation, the top or bottom 20% were selected to be the par-

ents of the next generation. We estimated the resulting selection

gradient using linear regression of total number of offspring se-

lected to contribute to the next generation on ln-transformed days

to flower. Despite using a consistent criterion each generation,

selection gradients were not equal (Table S2). The other three

traits were only measured after the third generation of selection,

and therefore we ignore any inadvertent selection that may have

occurred on these traits and set their selection gradients equal to

zero.

We predicted the evolution of days to flower after three gen-

erations of selection for a number of different genetic models. For

each model, we used the starting mean (ln-transformed) for each

line and iteratively applied it across generations. Although we

used multivariate models to calculate predicted values, we used

only the predictions for days to flower to assess fit, as this was the

phenotype under selection. All parameters used for model fitting

are given either in Galloway et al. (2009) or in the Supporting

Information.

We compared six different models, two in each of three fam-

ilies of models. The first two models did not incorporate maternal

effects in their prediction of evolutionary change. In Model 1

(breeder’s equation), we used a naı̈ve estimation of G that as-

sumed the absence of maternal effects. This G was estimated in

ASReml 3.0 (Gilmour et al. 2009) using the data set presented

in Galloway et al. (2009) and was inserted into the multivariate

breeder’s equation, �z̄ = Gβ (Lande 1979; Lande and Arnold

1983; Table S3). In Model 2 (breeder’s equation, maternal ef-

fects removed), we accounted for maternal effects when measur-

ing genetic parameters, but did not use them in the prediction

of response to selection. In other words, Gdd was inserted into

the multivariate breeder’s equation in place of G. The next two

models both belong to the variance-components framework, ac-

counting for maternal effects via matrices of maternal variance

and direct-maternal covariance. In Model 3 (variance-components

model), direct and maternal (co)variance matrices were substi-

tuted into equation (1) without correcting for potential cascad-

ing maternal effects. In Model 4 (variance-components model,

corrected), these matrices were instead substituted into equation

(12), which includes a correction for cascades. The remaining

two models were trait based, using the matrix M to assign mater-

nal effects to specific maternal traits. Model 5 (trait-based model

with time lag) explicitly accounted for carryover effects across

generations. In the first generation, effects of previous gener-

ations were considered negligible, and response was predicted

using

�z̄(t) = (Caz + MP) β(t). (13)

Table 1. Mean absolute difference (in days) between predictions

of quantitative genetic models to observed response to artificial

selection on days to flower in Campanulastrum americanum, cal-

culated using data plotted in Figure 2. Models are listed from best

to worst fit. See “Empirical Methods” section for definitions of

models.

Mean absolute
Model difference (days)

5: Trait-based, with time lag 2.27
6: Trait-based, asymptotic 5.25
2: Breeder’s equation, maternal

effects removed
6.64

4: Variance-components, corrected 6.67
3: Variance-components 7.40
1: Breeder’s equation 19.35

In subsequent generations, we used equation (2), which has

terms that include selection and evolutionary change from the

previous generation. Equation (3) was used to calculateCaz , with

G calculated from equation (A10b; Table S4). The phenotypic

(co)variance matrix was calculated following Willham (1972) as

P = Gdd + 1

2
Gdm + 1

2
Gmd + Gmm + Edd + Emm, (14)

(Table S2 of Galloway et al. 2009). Model 6 (trait-based model,

asymptotic) assumes that selection is constant across generations

and hence the rate of evolution has reached an asymptote. As a

consequence of this assumption, it is not necessary to explicitly

model the lag across generations due to maternal effects. G was

calculated as above and substituted into equation (5).

We did not statistically test the fit of models using informa-

tion criteria (Burnham and Anderson 2002) or other methods, as

our data sets did not readily conform to standard model compar-

ison techniques. Rather, we simply present summary statistics of

the average absolute difference between predicted and observed

values of days to flower at the end of the selection experiment

and rank the models from least to greatest difference between

observed and predicted.

Empirical Results
The trait-based model incorporating time lag (Model 5) fit the

observations substantially better than all other models (Fig. 2 and

Table 1). Model 1, which completely ignored maternal effects,

provided the worst fit (Fig. 2 and Table 1). The other four models

clustered in the middle, providing a similar fit to the data (Fig. 2

and Table 1).

Comparing the two variance-components models, our pro-

posed correction factor increased the goodness of fit (Model 3 vs.
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Figure 2. Observed (± SE) and predicted (back-transformed) means for days to flower after three generations of artificial selection.

Selection was for earlier flowering in E lines (negative selection gradients) and later flowering in L lines (positive selection gradients;

Table S2). The six models, which are ordered from best fit to worst (Table 1), represent three families: breeder’s equation (models 1 and

2), variance-components (models 3 and 4), and trait-based (models 5 and 6).

Model 4); however, the magnitude of this difference was not large.

Despite the presence of cascading maternal effects in our results

(e.g., days to flower has a negative effect on itself, Table S1),

these cascades were not strong enough for the correction factor to

have a large impact. When considering the two trait-based models,

the asymptotic model provided a notably worse fit to the data than

the time-lag model. This likely occurred because selection gradi-

ents differed enough across generations that the assumptions of

the asymptotic model did not hold (Table S2).

Across the two model types, the variance-components model

provided slightly worse fit than the asymptotic trait-based model.

One possible explanation for this lies with the Gmm term. When all

relevant traits have been included, Gmm should theoretically equal

MGddMT (McGlothlin and Brodie 2009); however, our estimate

was roughly equal to 2MGddMT. This suggests that our estimate

of this matrix may have been inflated due to factors such as

unmeasured traits or an inability to separate maternal additive

genetic variance from other sources of maternal variance. It is

unknown whether this situation is likely to be common in other

data sets.

Surprisingly, accounting for maternal effects when estimat-

ing Gdd but ignoring them when calculating response to selec-

tion (Model 2) provided a fit similar to that of the variance-

components model. This seems to have been the case because

the last three genetic terms in the variance-components model,
1
2 Gdm + Gmd + 1

2 Gmm , largely canceled one another out for el-

ements that affected the evolutionary response of days to flower

due to the negative direct-maternal correlations we observed. Such

negative correlations are common but not universal in nature

(Räsänen and Kruuk 2007). In contrast, when maternal effects

were completely ignored (Model 1), the genetic variance for days

to flower was greatly inflated, causing an overestimation of the

response to selection.

Discussion
The success of any quantitative genetic model relies on its ability

to predict evolutionary change (Grant and Grant 1995). Evolu-

tionary biologists have long been aware that considering ma-

ternal effects is crucial to making such predictions accurately

(Dickerson 1947; Willham 1963, 1972; Kirkpatrick and Lande

1989; Mousseau and Fox 1998; Räsänen and Kruuk 2007), and

our results strongly support this conclusion. When we tested mod-

els that included maternal effects against the standard breeder’s

equation, maternal effect models consistently made more accu-

rate predictions of the response to artificial selection on days to

flower, a maternally influenced trait, across four selection lines.

A naı̈ve application of the breeder’s equation dramatically over-

estimated the rate of evolutionary change in each of our selec-

tion lines, showing that the consequences of ignoring maternal

effects altogether may be quite drastic. When we factored out

maternal effects but did not include them in our calculations to

predict evolutionary change, treating them as “nuisance param-

eters” (Räsänen and Kruuk 2007), the breeder’s equation made

more accurate predictions. This result seems to have been due to

EVOLUTION FEBRUARY 2014 5 5 5



J. W. MCGLOTHLIN AND L. F. GALLOWAY

the strongly negative direct-maternal correlations present in our

system (Galloway et al. 2009). Negative direct-maternal correla-

tions are common in nature (Räsänen and Kruuk 2007), suggest-

ing such an approximation may often work well, but they are by

no means universal, so this approach should be taken only with

caution.

The differences among maternal effect models were more

subtle. Previously, variance-components and trait-based models

of maternal effects have been rather distinct from each other in

the literature, and equivalence between their predictive equations

has been demonstrated only for a few special cases (Kirkpatrick

and Lande 1989; Lande and Price 1989; Hadfield 2012). Our

theoretical results demonstrate that two classes of maternal ef-

fects models—variance-components and trait-based—make sim-

ilar predictions under a wide variety of conditions. When se-

lection can be assumed to be uniform across generations and

in the absence of cascading maternal effects (traits that both

mediate and are influenced by maternal effects), the standard

variance-components model and the asymptotic trait-based model

were shown to make identical predictions. The two models are

nearly equivalent if cascading maternal effects are relatively weak,

and diverge from one another as cascading maternal effects be-

come stronger. In this case, the variance-components model will

tend to significantly overestimate the response to selection, and

the correction factor K, which is a simple function of direct

genetic variance and direct-maternal covariance, should be ap-

plied. When selection changes modestly across generations or

when maternal effects are weak, these models also offer a rea-

sonable approximation of the trait-based time-lag model. How-

ever, only the latter model is capable of fully incorporating

the complexities that arise from maternal effects and is likely

to make the most accurate predictions when its parameters are

estimable.

Our empirical results supported these theoretical conclu-

sions. Although all maternal effect models we tested made pre-

dictions that could be considered reasonably accurate, models

varied in their fit to observed response to selection. Specifically,

Kirkpatrick and Lande’s model (1989) incorporating time lags in

evolutionary response made the most accurate predictions, with

all other maternal effect models providing a similar, but less accu-

rate fit. As demonstrated by Kirkpatrick and Lande (1989; Lande

and Kirkpatrick 1990), maternal effects tend to cause such lags

because selection, in addition to changing the genetic composi-

tion of a population, alters the distribution of the phenotypes that

mediate maternal effects and thus any cross-generational effects

associated with those phenotypes. The effect of these time lags

is predicted to be more dramatic when selection varies strongly

from generation to generation. In our data set, although a con-

sistent selection criterion was applied each generation, that is the

earliest or latest 20% (Burgess et al. 2007), phenotypic selec-

tion gradients were not equal in each generation and thus the

model that accounted for time lags was a better fit. Natural se-

lection is likely to be much more variable than artificial selection

(Siepielski et al. 2009), and therefore the greater predictive ability

of the trait-based time lag model may be much larger in natural

populations.

Although the time-lag model provided the most accurate pre-

dictions of evolutionary change in our data set, in some cases it

may be desirable to apply a model that does not include time lags.

For example, investigators may wish to make predictions about

evolution in a natural population based on a single estimate of

selection. If it is reasonable to accept the assumption that selec-

tion does not vary greatly across generations, both the variance-

components and asymptotic trait-based models should provide

acceptable predictions. The asymptotic trait-based model and

variance-components model provided similarly accurate fits to our

observed results, although the fit of the former trait-based model

was slightly better. The poorer fit of the variance-components

model can be attributed to two causes: first, estimates of mater-

nal genetic variances may have been slightly inflated (perhaps

due to an inflation of the maternal variance term); and second,

the presence of cascading maternal effects led to a violation of

the model’s assumptions. Applying the correction factor K to

the variance-components model slightly increased its accuracy as

predicted.

In conclusion, our results emphasize the importance of con-

sidering maternal effects when making evolutionary predictions.

We recommend fitting trait-based models, particularly those that

incorporate time lags, whenever possible to make the most ac-

curate predictions. In doing so, it must be remembered that ap-

plication of the trait-based framework necessitates a multivariate

approach. Accurately estimating the key parameter of the trait-

based model, the maternal-effects matrix M, requires measure-

ment of the traits of the mother that are hypothesized to underlie

maternal effects. By contrast, most studies that have taken the

variance-components approach have focused on a single trait or

have applied univariate models to several traits (Räsänen and

Kruuk 2007).

It is also important to note that as in any multivariate

analysis, failing to measure the important maternal traits in trait-

based models may significantly reduce the accuracy of predic-

tions. Neglecting traits of importance may cause maternal ef-

fects to be attributed to the incorrect mediating phenotype. In

many cases, however, it will be possible to use the biology of

the study organism to generate strong hypotheses about the iden-

tity of important maternal traits. It is also likely that including

traits that are relatively well correlated with the causal maternal

phenotypes may generate sufficiently accurate predictions. For

example, although we detected a strong maternal effect of juve-

nile size (rosette size) on the same trait in offspring, it is likely

5 5 6 EVOLUTION FEBRUARY 2014



MATERNAL EFFECTS AND SELECTION RESPONSE

that this effect is causally mediated by another trait of the adult

plant.

When it is difficult or impossible to measure enough traits

to estimate M, our results suggest that the variance-components

model may provide a reasonable approximation, especially when

cascading maternal effects can be assumed to be absent. Whether

such an assumption is likely to be reasonable is an empirical

question. We recommend more studies that investigate cascading

maternal effects using a trait-based approach to determine whether

such cascades often influence the evolution of natural populations.

ACKNOWLEDGMENTS
The reviewers and editors of a previous version of this manuscript pro-
vided excellent insights that significantly improved the article. The au-
thors thank J. Etterson and K. Burgess for their work on the original
experiments that are reanalyzed here. The authors also thank E. Brodie
III for financial support to JWM (National Science Foundation [NSF]
DEB-0922216), helpful discussions, and access to software. Data collec-
tion were supported by NSF DEB-9974126 and DEB-0316298 to LFG.

LITERATURE CITED
Badyaev, A. V., G. E. Hill, M. L. Beck, A. A. Dervan, R. A. Duckworth,

K. J. McGraw, P. M. Nolan, and L. A. Whittingham. 2002. Sex-biased
hatching order and adaptive population divergence in a passerine bird.
Science 295:316–318.

Bernardo, J. 1996. Maternal effects in animal ecology. Am. Zool. 36:83–105.
Bijma, P. 2013. The quantitative genetics of indirect genetic effects: a selective

review of modelling issues. Heredity. doi: 10.1038/hdy.2013.15.
Burgess, K. S., J. R. Etterson, and L. F. Galloway. 2007. Artificial selection

shifts flowering phenology and other correlated traits in an autotetraploid
herb. Heredity 99:641–648.

Burnham, K. P., and D. Anderson. 2002. Model selection and multi-model
inference: a practical information-theoretic approach. Springer-Verlag,
New York.

Byers, D. L., G. A. J. Platenkamp, and R. G. Shaw. 1997. Variation in seed
characters in Nemophila menziesii: evidence of a genetic basis for ma-
ternal effect. Evolution 51:1445–1456.

Cheverud, J. M. 1984. Evolution by kin selection: a quantitative genetic model
illustrated by maternal performance in mice. Evolution 38:766–777.

Dickerson, G. E. 1947. Composition of hog carcasses as influenced by her-
itable differences in rate and economy of gain. Res. Bull. Iowa Agric.
Exp. Station 354:489–524.

Donohue, K. 1999. Seed dispersal as a maternally influenced character: mech-
anistic basis of maternal effects and selection on maternal characters in
an annual plant. Am. Nat. 154:674–689.

Donohue, K., and J. Schmitt. 1998. Maternal environmental effects in plants:
adaptive plasticity? Pp. 137–158 in T. A. Mousseau and C. W. Fox, eds.
Maternal effects as adaptations. Oxford Univ. Press, New York.

Duckworth, R. A. 2009. Maternal effects and range expansion: a key factor in
a dynamic process? Philos. Trans. R. Soc. Lond. B 364:1075–1086.

Falconer, D. S. 1960. The genetics of litter size in mice. J. Cell. Phys. 56:153–
167.

———. 1965. Maternal effects and selection response. Proc. XI Int. Congr.
Genet. 3:763–774.

Fox, C. W., and T. A. Mousseau. 1998. Maternal effects as adaptations for
transgenerational phenotypic plasticity. Pp. 159–177 in T. A. Mousseau
and C. W. Fox, eds. Maternal effects as adaptations. Oxford Univ. Press,
New York.

Fox, C. W., and U. M. Savalli. 2000. Maternal effects mediate host expansion
in a seed-feeding beetle. Ecology 81:3–7.

Galloway, L. F. 2005. Maternal effects provide phenotypic adaptation to local
environmental conditions. New Phytol. 166:93–99.

Galloway, L. F., and J. R. Etterson. 2007. Transgenerational plasticity is
adaptive in the wild. Science 318:1134–1136.

Galloway, L. F., J. R. Etterson, and J. W. McGlothlin. 2009. Contribution of
direct and maternal genetic effects to life-history evolution. New Phytol.
183:826–838.

Gilmour, A. R., B. J. Gogel, B. R. Cullis, and R. Thompson. 2009. ASReml
user guide release 3.0. VSN International Ltd., Hemel Hempstead, U.K.

Grant, P. R., and B. R. Grant. 1995. Predicting microevolutionary responses
to directional selection on heritable variation. Evolution 49:241–251.

Grindstaff, J. L., E. D. Brodie, III, and E. D. Ketterson. 2003. Immune function
across generations: integrating mechanism and evolutionary process in
maternal antibody production. Proc. R. Soc. Lond. B. 270:2309–2319.

Hadfield, J. D. 2012. The quantitative genetic theory of parental effects.
Pp. 267–284 in N. J. Royle, P. T. Smiseth, and M. Kölliker, eds. The
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