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Interactions among conspecifics influence social evolution through two distinct but intimately related paths. First, they provide

the opportunity for indirect genetic effects (IGEs), where genes expressed in one individual influence the expression of traits in

others. Second, interactions can generate social selection when traits expressed in one individual influence the fitness of others.

Here, we present a quantitative genetic model of multivariate trait evolution that integrates the effects of both IGEs and social

selection, which have previously been modeled independently. We show that social selection affects evolutionary change whenever

the breeding value of one individual covaries with the phenotype of its social partners. This covariance can be created by both

relatedness and IGEs, which are shown to have parallel roles in determining evolutionary response. We show that social selection is

central to the estimation of inclusive fitness and derive a version of Hamilton’s rule showing the symmetrical effects of relatedness

and IGEs on the evolution of altruism. We illustrate the utility of our approach using altruism, greenbeards, aggression, and

weapons as examples. Our model provides a general predictive equation for the evolution of social phenotypes that encompasses

specific cases such as kin selection and reciprocity. The parameters can be measured empirically, and we emphasize the importance

of considering both IGEs and social selection, in addition to relatedness, when testing hypotheses about social evolution.
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Evolution by natural selection can be modeled as two sequen-

tial processes: phenotypic selection, which leads to changes in

the distribution of phenotypes within a generation, and inheri-

tance, which translates these changes across generations (Fisher

1930; Lande 1979; Falconer and MacKay 1996). In the traditional

view, fitness differences among individuals reflect responses to

the physical environment, giving rise to selection favoring phe-

notypes appropriate to that environment. Evolutionary change

then occurs when alleles associated with these favored pheno-

types increase in frequency across generations. The relationships

between genotype and phenotype and between phenotype and fit-

ness are often more complex than this, however, and these intrica-

cies may influence the rate and direction of phenotypic evolution

(Dawkins 1982; Mousseau and Fox 1998; Wolf et al. 1998, 2000;

Pigliucci 2001; Odling-Smee et al. 2003; West-Eberhard 2003;

Lande 2009).

Traits involved in interactions among conspecifics are no-

table cases in which simple evolutionary models are inappropriate
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(Darwin 1859; West-Eberhard 1979, 1983; Lande 1981;

Frank 1998). In animals, such interactions typically involve

social behavior, the study of which makes up much of the field of

behavioral ecology (Székely et al. 2010; Westneat and Fox 2010).

However, social interactions do not necessarily require an animal

nervous system and occur in virtually all taxa (Frank 2007; e.g.,

microorganisms, Crespi 2001; Foster 2010; plants, Dicke et al.

2003; Karban 2008). Behavior such as aggression and courtship

in animals are the most intuitive examples, but competitive inter-

actions such as relative growth rates of neighboring plants exhibit

the same kinds of phenotypic feedback (Mutic and Wolf 2007).

Social effects on phenotypic evolution may occur whenever “in-

teracting phenotypes” are present, that is, when the phenotype of

one individual affects the phenotype or fitness of a conspecific

(Moore et al. 1997; Wolf et al. 1998, 1999; Bleakley et al. 2010;

Wolf and Moore 2010).

Social interactions moderate inheritance by altering the re-

lationship between genotype and phenotype. For example, the

behavior of a focal individual may depend on the behavior of its

social partner(s) so that phenotypic expression is determined by

both the individual’s own genes and those of its social partner(s)

(Fig. 1). The phenotypic effects of genes in social partners are

known as “indirect genetic effects” (IGEs, Moore et al. 1997;

Wolf et al. 1998; Wolf and Moore 2010) or associative genetic

effects (Griffing 1967, 1969, 1976, 1981a; Bijma et al. 2007a;

Bijma and Wade 2008). Because they are genetic in origin, IGEs

represent an environmental source of variance that is heritable

and thus contributes to the evolutionary response to selection.

Figure 1. Path diagram depicting the effects of interacting phe-

notypes on phenotypic evolution. Variables associated with a focal

individual are shown with no superscript, and variables associated

with its interactant are given a prime. Each phenotype is affected

by additive genetic (a), environmental (e), and indirect genetic ef-

fects. Relatedness between the two individuals is represented by

the path coefficient r. The path coefficient ψ translates the inter-

actant’s phenotype into an indirect genetic effect, which is shown

as a double arrow to indicate that the effect is reciprocal. The

fitness of the focal individual (w) is affected by both its own phe-

notype (nonsocial selection, βN) and that of its interactant (social

selection, βS).

Consequently, IGEs can alter the evolutionary dynamics of traits

compared to those expected under traditional quantitative genetic

models (Moore et al. 1997).

Social interactions affect selection by directly generating fit-

ness differences among individuals. This path is termed social

selection, which is broadly defined to include any case in which

conspecific interactions lead to variance in reproductive success,

including competition, cooperation, and sexual selection (Darwin

1859; Wynne-Edwards 1962; Crook 1972; West-Eberhard 1979,

1983; Frank 2006). Although this perspective captures the range

of relevant interactions, it does not provide a means to distinguish

social selection from nonsocial selection in a quantitative way.

Wolf et al. (1999) narrowed the definition by explicitly recogniz-

ing social selection as effects on the fitness of one individual that

directly result from traits of interacting individuals. There are at

least three advantages to adopting this definition of social selec-

tion. First, social selection can be measured using standard and

widely used multiple regression techniques that have been used to

generate a wealth of data on individual-level selection (Lande and

Arnold 1983; Kingsolver et al. 2001). This approach measures

social selection as the effect of social-partner or group traits on

the fitness of a focal individual, while controlling for the effects of

that individual’s own traits (as in contextual analysis, Heisler and

Damuth 1987; Goodnight et al. 1992). Second, the accounting of

fitness is individual based and remains consistent across all indi-

viduals in the population. The individual fitness approach yields

equivalent results to inclusive and multilevel fitness formulation

when appropriate assumptions are made (Queller 1992a; Frank

1998; Taylor et al. 2007; Bijma and Wade 2008). Third, selection

gradients can be combined with quantitative genetic parameters

to predict evolutionary response to selection (Lande 1979; Lande

and Arnold 1983; Bijma and Wade 2008).

Previous models have treated inheritance and selection in iso-

lation (Moore et al. 1997; Wolf et al. 1999). However, when traits

function as interacting phenotypes, their effects on both stages of

the evolutionary process are inexorably coupled. The same phe-

notypic interactions that affect the paths of inheritance within a

population also are expected to affect the modes and targets of

selection. We therefore seek to integrate previous work by deriv-

ing a general multivariate equation for the response to social and

nonsocial selection. Our results demonstrate that a response to so-

cial selection is predicted whenever there is a nonzero covariance

between breeding values in one individual and the phenotype of its

social partner or the mean phenotype of its group. This critical co-

variance may arise from relatedness (or other similar associations

between direct breeding values), IGEs, or both. Our results re-

veal a fundamental symmetry between coefficients of relatedness

and the strength of IGEs. We provide examples showing how the

symmetry between relatedness and IGEs alters the predictions of

Hamilton’s (1963, 1964a,b) rule for the evolution of altruism, and
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how altruism, greenbeards, aggression, and weapons can evolve

by social selection and IGEs.

Evolutionary Response to Social
Selection
A GENERAL EQUATION

In the most general sense, interacting phenotypes are either traits

that affect the phenotype or fitness of another individual or traits

that are affected by interacting with another individual. Such traits

tend to be subject to two types of selection. As with any trait,

individual, or nonsocial, selection arises when the fitness of the

focal individual is affected by its own phenotype. When the fitness

of a focal individual is affected by the phenotype of a social

partner or partners, social selection occurs (Wolf et al. 1999). The

contribution of social selection to the total covariance between

phenotype and fitness (the selection differential, s) depends on

the covariance between the phenotypes of the focal individual

and its social partner. In matrix notation,

s = PβN + CIβS, (1)

where s is a column vector of selection differentials, P represents

the phenotypic variance–covariance matrix, CI is the matrix of

covariances among the phenotypes of interactants, βN is a column

vector of individual, or nonsocial, selection gradients, and βS is

a column vector of social selection gradients (cf. equation 11 of

Wolf et al. 1999). This approach to partitioning selection cor-

responds to the “neighbor” approach derived by Okasha (2006)

from the results of Nunney (1985). (Throughout our derivation, we

use matrix notation to achieve multivariate generality. The one-

trait and two-trait examples discussed in earlier papers [Moore

et al. 1997; Wolf et al. 1999] can be derived from the multi-

variate equations presented here). To facilitate following models,

we provide in Table 1 a summary of the notation used in this

article.

Equation (1) shows that a nonzero CI is necessary for social

selection to contribute to overall phenotypic selection on a trait.

However, the s vector in equation (1) cannot simply be substituted

into the multivariate breeder’s equation, �z̄ = GP−1s (where G is

the additive genetic (co)variance matrix, Lande 1979) to predict

the evolutionary response to selection (represented by the vec-

tor of changes in mean trait values, �z̄). This is because CI can

reflect both heritable and environmental sources of covariance.

For example, a nonzero CI may arise when the phenotypes of

neighbors covary solely because they exist in more similar envi-

ronments relative to some other group of neighbors; that is, there

is environmentally determined population subdivision.

We next use Price’s theorem (Robertson 1966; Li 1967; Price

1970) to derive generalized equations for the response to simulta-

neous social and nonsocial selection (see also Frank 1997, 1998;

Rice 2004; Bijma et al. 2007a; Bijma and Wade 2008). We first

develop the equations for pairs of interacting individuals for sim-

plicity and later extend the case to larger groups. Price’s theorem

Table 1. Notation used in this article.

Symbol Meaning

a, e Vectors of additive genetic and residual values
aS, eS Vectors of social (indirect) breeding and residual values (Bijma et al. 2007a; McGlothlin and Brodie 2009)
A Vector of total breeding values (Moore et al. 1997; Bijma et al. 2007a; McGlothlin and Brodie 2009)
βN Vector of nonsocial (“natural”) selection gradients (Wolf et al. 1999)
βS Vector of social selection gradients (Wolf et al. 1999)
CAz, CAz′ Covariance matrices of a focal individual’s total breeding values with its own phenotypes and those of an interactant
CI Matrix of phentoypic covariance between interacting individuals (Wolf et al. 1999)
G Additive genetic variance–covariance matrix (Lande 1979)
GD Variance–covariance matrix of direct breeding values (McGlothlin and Brodie 2009)
GDS, GSD Covariance matrix of direct and social breeding values and its transpose (McGlothlin and Brodie 2009)
GS Variance–covariance matrix of social breeding values (McGlothlin and Brodie 2009)
n Group size
P Phenotypic variance–covariance matrix (Lande 1979)
� Matrix of indirect genetic effects coefficients ψij (Moore et al. 1997)
r, R Univariate and multivariate relatedness
s Multivariate selection differential, a vector (Lande 1979)
w Relative fitness, a scalar
z, z′ Vectors of focal individual and interactant phenotypes (Moore et al. 1997)
�z̄ Multivariate evolutionary change in phenotypic mean, a vector (Lande 1979)
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states that the change in mean phenotype is equal to the covariance

between total breeding values and fitness, or

�z̄ = cov(A, w), (2)

where A is a vector of total breeding values for each phenotype

of interest. An individual’s total breeding value represents its

expected contribution to average offspring phenotype, and may

consist of both direct and indirect genetic effects (Falconer and

MacKay 1996; Moore et al. 1997; Bijma et al. 2007a; McGlothlin

and Brodie 2009). Following Wolf et al. (1999), we represent

relative fitness, w, as a regression equation including the vectors

of focal-individual and social-partner phenotypic values,

w = α + zTβN + z′TβS + ε, (3)

where α is an intercept, ε is an error term, z is a vector of phe-

notypic values in focal individuals, z′ is a vector of phenotypes

in social partners, and T denotes matrix transposition (Fig. 1).

Throughout our derivation, we use a prime to denote variables

that belong to a social partner rather than the focal individual.

Substituting equation (3) into equation (2), we find

�z̄ = cov
(
A, α + zTβN + z′TβS + ε

)

= cov(A, zT)βN + cov(A, z′T)βS, (4a)

which can be written in a compact form as

�z̄ = CAzβN + CAz′βS. (4b)

Equation (4b) shows that the portion of evolutionary change

attributable to nonsocial selection is proportional to the matrix

of covariances between the focal individuals’ total breeding val-

ues and their own phenotypic values (CAz). Similarly, the por-

tion of evolutionary change due to social selection is propor-

tional to the matrix of covariances between the focal individuals’

breeding values and the phenotypic values of their social part-

ners (CAz′ ). In other words, in order for evolutionary change to

occur, a nonrandom association between the genes of individu-

als and the phenotypes of their social partners must accompany

social selection. The causes of a nonzero CAz′ can be divided

into two general classes: either individuals are associated nonran-

domly based on their genotypes (e.g., relatedness) or phenotypic

expression is influenced by the association between individuals

(IGEs).

Below, we explore the components of the covariance ma-

trices using a trait-based model of IGEs (Moore et al. 1997). In

Appendix A, we illustrate the equivalence between the trait-based

approach adopted here and the phenotypic variance component

models of IGEs of Griffing (1967, 1969, 1976, 1981a) and Bijma

and colleagues (Bijma et al. 2007a,b; Bijma and Wade 2008).

RELATEDNESS AND IGEs

The phenotypic vectors of two interacting individuals are defined

as

z = a + e + �z′ (5a)

z′ = a′ + e + �z, (5b)

where the strength and direction of IGEs is described by the square

matrix of interaction coefficients �, which consists of elements

ψij describing the effect of trait j in an interactant on trait i in

a focal individual (Moore et al. 1997). Again, throughout this

derivation, we use primes to denote that a variable belongs to the

focal individual’s social partner.

Substituting equation (5b) into (5a) and vice versa, the phe-

notypic vectors can be defined explicitly as

z = (I − ��)−1(a + e + �a′ + �e′) (6a)

z′ = (I − ��)−1(a′ + e′ + �a + �e), (6b)

where a is a column vector of additive genetic values, e is a

column vector of environmental effects, I represents the identity

matrix (Fig. 1). As in Moore et al. (1997), we assume that the

total effects of interacting phenotypes can be decomposed into

additive genetic (�a′) and environmental effects (�e′). That is,

we assume the effects of a social partner’s genes and environment

on the expression of a focal individual’s phenotypes occur solely

via effects of the social partner’s phenotype (Fig. 1). The factor

(I − ��)−1 represents the potential for feedback, which arises

because traits in the two individuals may simultaneously affect

one another (see Moore et al. 1997 for derivation). The vector

of total breeding values can be determined by solving for an

individual’s additive genetic contribution to the expectation of

equation (5a),

A = (I − ��)−1(a + �a),

and simplifying,

A = (I − �)−1a (7)

(see Moore et al. 1997 for derivation). Substituting equations (6)

and (7) into equation (4a), we find

�z̄ = cov[(I − �)−1a,[(I − ��)−1(a + e + �a′ + �e′)]T]βN

+ cov[(I − �)−1a,[(I − ��)−1(a′+ e′ + �a + �e)]T]βS.

(8)

To simplify this equation, we make the standard quantitative ge-

netic assumption that all covariances between additive genetic

values and residual (environmental) values are zero, giving
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�z̄ = (I − �)−1[G + cov(a, a′T)�T](I − �T�T)−1βN

+ (I − �)−1[cov(a, a′T) + G�T](I − �T�T)−1βS. (9)

When cov(a, a′T) arises because interacting individuals are related

or due to population genetic structure, cov(a, a′T) = rG, where r

is the coefficient of relatedness, and equation (9) simplifies to

�z̄ = (I − �)−1G(I + r�T)(I − �T�T)−1βN

+ (I − �)−1G(rI + �T)(I − �T�T)−1βS. (10)

The formulation in equation (10) uses a regression-based

definition of relatedness, which can incorporate both pedigree re-

latedness and population structure (Wright 1965; Hamilton 1972;

Michod and Hamilton 1980; Uyenoyama and Feldman 1981;

Uyenoyama 1984; Grafen 1985; Queller 1992b; Bijma et al.

2007a). Hamilton’s regression definition was stated in its most

general form, r = cov(a, a′)
var(a) , by Queller (1992b). In most cases, r

will be zero or positive, but may be negative if individuals avoid

relatives as social partners more than would be expected at random

(Hamilton 1972; Rousset 2002; Konovalov and Heg 2008).

Equation (10) assumes that relatedness is uniform across

all traits. This assumption is likely to be violated whenever in-

dividuals assort nonrandomly based on specific phenotypes, as

might occur in trait-group or greenbeard models (Hamilton 1964b;

Wilson 1975; Dawkins 1976; Wilson and Dugatkin 1997; Wolf

et al. 1999; Pepper 2000; Jansen and van Baalen 2006; Grafen

2009; Gardner and West 2010). To encompass such situations

and achieve greater generality, we define a matrix of association

among breeding values as

R = cov(a, a′T)G−1, (11)

which is a simple multivariate extension of Queller’s (1992b)

expression of additive genetic relatedness. R is a square matrix

of partial regression coefficients rij that describe the translation

between the additive genetic values of focal individuals and their

interactants. In general, cov(a, a′T) will tend to be symmetrical,

but R will not. Incorporating R into equation (9) and simplifying,

we find

�z̄ = (I − �)−1G(I + RT�T)(I − �T�T)−1βN

+ (I − �)−1G(RT + �T)(I − �T�T)−1βS. (12)

When relatedness is uniform across traits, R = rI, and equa-

tion (12) reduces to equation (10). Otherwise, it is difficult to

determine the structure of R based on a priori expectations, al-

though specific structures may be postulated to explore specific

models of social evolution. For example, in a true greenbeard

situation, individuals assort nonrandomly based on a single rec-

ognizible trait that signals (zi) the propensity to behave altruisti-

cally (Dawkins 1976; Gardner and West 2010). Here, R could

be modeled as zero except for a single diagonal element rii.

Off-diagonal elements of R would be nonzero when one trait

in a focal individual predicts an association with a second trait

in its partner, as in the coevolution of male ornaments and fe-

male preference in sexual selection (Lande 1981; Kirkpatrick

1982). R is therefore a parameter that can be experimentally mea-

sured to test predictions associated with specific models of social

evolution.

Equation (12) is general and can be applied to many specific

situations. In the absence of IGEs and social selection, equa-

tion (12) simplifies to the standard multivariate breeder’s equa-

tion (Lande 1979; Lande and Arnold 1983). In the Discussion,

we present worked examples for two traits showing how IGEs

and social selection combine to lead to evolution of traits such as

altruism, greenbeards, aggression, and weapons.

EVOLUTIONARY RESPONSES TO SOCIAL VERSUS

NONSOCIAL SELECTION

To understand how the response to social selection differs from

the response to nonsocial selection, we can examine equation (12)

in detail. Comparing equations (12) and (4b), we see that the

portion of the evolutionary response due to nonsocial selection is

determined by CAz and that this matrix can be defined as

CAz = (I − �)−1G(I + RT�T)(I − �T�T)−1. (13)

Similarly, the response to social selection is determined by CAz′ ,

which is defined as

CAz′ = (I − �)−1G(RT + �T)(I − �T�T)−1. (14)

Common to both responses are the factors (I − �)−1 and (I −
�T�T)−1, which represent the linear and feedback influences,

respectively, of IGEs on phenotypic expression (Moore et al. 1997;

Bleakley et al. 2010). Thus, the portions of evolutionary change

due to nonsocial and social selection are influenced equally by

two of the main effects of IGEs: alteration of the relationship

between genotype and phenotype and the acceleratory effects of

feedback between interacting individuals.

The unique effects of relatedness (or other nonrandom assort-

ment of breeding values) and IGEs are encompassed in the factors

(I + RT�T) and (RT + �T) (and, when relatedness is assumed to

be uniform across traits, their analogs in eq. 10). The first factor

represents an interaction between relatedness and IGEs and shows

that the response to nonsocial selection is generally increased by

IGEs that occur among related individuals (Griffing 1976, 1981b;

Bijma et al. 2007a; Ellen et al. 2007; Bijma and Wade 2008). The

second factor shows that both relatedness and IGEs contribute to

the response to social selection (Griffing 1976; Muir 1996; Bijma

et al. 2007a; Bijma and Wade 2008), and do so independently and

symmetrically.
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EFFECTS OF GROUP SIZE

Although our treatment so far has been limited to interactions

between two individuals to illustrate basic concepts, social inter-

actions often involve multiple individuals. With multiple social

partners, fitness can be expressed as

w = α + zTβN + (n − 1)z̄′TβS + ε, (15)

where the social selection gradient is defined as a single inter-

actant’s contribution to the fitness of a focal individual and n

represents group size. The mean phenotype of a focal individual’s

social partners is represented by z̄′. Equation (15) assumes that

groups are of equal size, but may be extended to include variable

group sizes by replacing n with the arithmetic mean group size, n̄.

When group-level selection is of interest, fitness can be defined

equivalently as

w = α + zTβN + z̄′Tβgroup + ε, (16)

which makes no assumption about group size. We may use Price’s

equation (2) to predict the evolution of the global mean phenotype

(� ¯̄z) by substituting equation (15), obtaining

� ¯̄z = cov(A, zT)βN + (n − 1)cov(A, z̄′T)βS. (17)

Equation (17) assumes that group size is either invariant, or (re-

placing n with n̄) is variable but has no genetic basis, but otherwise,

equation (17) is general and applicable to populations with any

group structure. To quantify the influences of relatedness versus

IGEs, the group structure must be specified explicitly. In Ap-

pendix B, we derive the case for a population with equally sized,

nonoverlapping groups of n individuals, which yields

� ¯̄z = [I − (n − 1)�]−1G[I − (n − 2)�T + r (n − 1)�T]

× [I − (n − 2)�T − (n − 1)�T�T]−1βN

+ (n − 1)[I − (n − 1)�]−1G(rI + �T)

× [I − (n − 2)�T − (n − 1)�T�T]−1βS.
(18)

We also derive an equivalent equation using the variance-

components framework in Appendix B.

Examination of equation (18) reveals that group size affects

both the linear and feedback effects of � for both nonsocial and

social selection. The effect of group size on the response to selec-

tion when IGEs are present will depend on the direction and mag-

nitude of the elements of �. The single-trait case is particularly

instructive, as an IGE between the same trait in two interactants

can cause a strong feedback effect that drastically increases the

response to selection (see Moore et al. 1997, Fig. 3B). Figure 2

shows the change in the evolutionary response to nonsocial selec-

tion and social selection when group size and IGEs are considered

relative to a model that includes only direct genetic effects. Using

Figure 2. Relative change in the portion of evolutionary response

of a single trait due to (A) nonsocial and (B) social selection as

a function of the strength of the indirect genetic effect (ψ) and

group size (n), when compared to a model that does not include

indirect genetic effects (see equations 19 and 20 to derive A and

B, respectively). Note that in both graphs, the range of is limited

to −1 < ψ < 1/(n − 1).

a single-trait version of equation (18) with r = 0, these can be

shown to be

1 − (n − 2)ψ

[1 − (n − 1)ψ][1 − (n − 2)ψ − (n − 1)ψ2]
(19)

for the response to nonsocial selection and

(n − 1)ψ

[1 − (n − 1)ψ][1 − (n − 2)ψ − (n − 1)ψ2]
(20)

for the response to social selection. The result is that for ψ > 0, the

evolutionary rate rapidly approaches infinity as ψ increases, but

does so for smaller values of ψ as group size increases. However,
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when ψ < 0, group size has very little effect. In other words, it

takes a very large negative ψ to create evolutionary acceleration

regardless of group size, but a very small positive ψ can have very

large effects if the group size is large. The ratios in equations (19)

and (20) suggest that for a single-trait system, −1 < ψ < 1/(n −
1), because at the boundaries of this range, the denominator equals

zero. Ultimately, determining the sign and magnitude of ψ is an

empirical question and provides a test of our model’s predictions

regarding social evolution.

The pattern of response to selection in Figure 2 arises primar-

ily because as groups become larger, positive values of ψ decrease

the denominator in equations (19) and (20) more quickly than do

negative values of ψ. This occurs due to two separate effects.

First, the linear effect of IGEs, [1 − (n − 1)ψ]−1, decreases when

ψ < 0 but increases when ψ > 0. This effect compensates for

the effect of group size on the numerator in equation (19), which

decreases with (n − 2). Second, the feedback effect of IGEs, [1 −
(n − 2)ψ − (n − 1)ψ2]−1, increases with increasing group size

when ψ > 0 but decreases with increasing group size when ψ <

0. This is caused by the term (n − 2)ψ.

These considerations suggest that positive feedback is more

effective at producing evolutionary acceleration than is negative

feedback. This asymmetry may be visualized by thinking of pos-

itive values of ψ as attractive forces that act to make pairs of

interacting individuals more similar. With positive values of ψ,

even small effects can act to make all individuals in a group

nearly identical. Negative values of ψ may be visualized as repel-

lent forces, pushing phenotypes of pairs of individuals in a group

away from each other. As groups become larger, any given pair

of phenotypes cannot be spread apart maximally because these

phenotypes are simultaneously affected by the phenotypes of all

the other group members.

The results above decompose IGEs caused by group interac-

tions into cumulative effects of individuals. However, in certain

systems, particularly when groups are large, it may be simpler

to consider total effects of a group on phenotypic expression.

Such group-level IGEs can be encompassed in the matrix �group

(McGlothlin and Brodie 2009).

Altruism, Social Selection, and IGEs
HAMILTON’S RULE EXTENDED

We analyze the evolution of altruism using our model to illus-

trate the similar but independent roles of relatedness and IGEs in

determining the response to social selection. As summarized by

Hamilton’s rule, altruism should increase in frequency if the cost

to the performer (C) is outweighed by the benefit to the recip-

ient (B) multiplied by the relatedness of the two individuals (r)

(Hamilton 1963, 1964a, b). Symbolically, altruism increases when

C < r B. (21)

In the notation of phenotypic selection, −βN and βS naturally

correspond to C and B in Hamilton’s formulation, because they

measure the fitness cost of possessing a given trait value z and

the fitness benefit of interacting with an individual possessing

trait value z′ (Wolf et al. 1999). This notation emphasizes that

the problem of altruism arises when two levels of selection—

nonsocial and social—act in opposition to each other (Price 1972;

Hamilton 1975; Wade 1985; Taylor and Frank 1996; Wilson and

Wilson 2007).

Wolf et al. (1999; Wolf and Moore 2010) derive a pheno-

typic version of Hamilton’s rule based on equation (1), which

can be used as a heuristic tool when genetic data are unavail-

able. Similarly, Goodnight et al. (1992; Goodnight 2005) derives

Hamilton’s rule in terms of individual- and group-level selection.

However, the phenotypic versions of Hamilton’s rule cannot be

used to quantitatively predict the evolution of altruistic traits, be-

cause they consider only selection and not the inheritance that

mediates the response across generations. Here, we derive a gen-

eral version of Hamilton’s rule for interacting phenotypes. For

simplicity, we consider only a single-trait case for a pair of in-

teracting individuals, but our derivation can be easily extended to

describe multivariate suites of traits or larger groups. Using a uni-

variate version of equation (4b) and asking when the phenotype z

will increase (i.e., when �z̄ > 0):

0 < CAzβN + CAz′βS, (22a)

which can be simplified to

−βN <
CAz′

CAz
βS . (22b)

This inequality is identical to the general version of Hamilton’s

rule derived by Queller (1985, 1992b). The ratio CAz′
CAz

is a measure

of the similarity of interacting individuals. It will tend to be pro-

portional to the phenotypic correlation between interactants (the

defining parameter of the phenotypic Hamilton’s rule; Wolf et al.

1999), but measures only genetic effects.

In a one-trait model with relatedness and IGEs, CAz and CAz′

are defined as

CAz = G
1 + rψ

(1 − ψ)(1 − ψ2)
(23)

and

CAz′ = G
r + ψ

(1 − ψ)(1 − ψ2)
. (24)

Substituting these definitions into inequality (22b), we find

−βN <
r + ψ

1 + rψ
βS . (25)
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Figure 3. Contribution of the indirect genetic effect (ψ) and re-

latedness (r) to the evolution of a single altruistic trait (inequality

25). The balance between social and nonsocial selection in the ex-

tended version of Hamilton’s rule is determined by the quantity

plotted on the vertical axis. See text for discussion.

This formulation shows that r and ψ have symmetrical effects

on the evolution of altruism (Fig. 3). Indeed, when there are no

IGEs, ψ = 0 and our result reduces to the typical formulation of

Hamilton’s rule (albeit expressed with different notation):

−βN < rβS . (26)

Similarly, when r = 0,

−βN < ψβS . (27)

This result shows the similarity of r and ψ. Both r and ψ can

be expressed as regression coefficients: r is the regression of an

individual’s direct genetic effect on its partner’s direct genetic

effect (Hamilton 1972), whereas ψ is the regression of an individ-

ual’s direct genetic effect on its partner’s indirect genetic effect

(McGlothlin and Brodie 2009). In this sense, ψ can be thought of

as a measure of indirect genetic relatedness. Both of these compo-

nents of relatedness are encompassed by Queller’s (1985, 1992b)

generalized definition of relatedness, which in our notation is ex-

pressed as CAz′
CAz

. The advantage of distinguishing direct genetic

relatedness from indirect genetic relatedness is the potential to

parse evolutionary consequences of interactions among relatives

from those due to phenotypic influences that may occur between

unrelated individuals.

Inequality (27) demonstrates that altruism should be able to

evolve without direct genetic relatedness, as long as IGEs provide

indirect genetic relatedness (see also Bijma and Wade 2008). This

is consistent with the view that all models of altruism require some

form of relatedness (West et al. 2007, 2008) but helps explain

some of the controversy as the genetic effects need not be direct.

For the single-trait case, ψ must be positive in order for IGEs

to drive the evolution of altruism. When ψ > 0, the phenotypes

of two interacting individuals become more similar (Moore et al.

1997). Thus, ψ may be considered to represent the strength of

reciprocity (Bleakley and Brodie 2009; Bleakley et al. 2010), and

to the extent that altruism depends upon ψ, it may be considered

reciprocal altruism (Trivers 1971; Axelrod and Hamilton 1981). In

addition to reciprocity, ψ may be used to model other behavioral

mechanisms such as manipualtion or punishment, that may lead

to cooperation between individuals (Clutton-Brock 2009).

INCLUSIVE FITNESS

In addition to deriving a general rule for the evolution of altru-

ism, Hamilton (1964a) defined the concept of inclusive fitness,

a measure of fitness that takes into account how one’s actions

affect one’s relatives. According to Hamilton, an individual’s in-

clusive fitness can be defined as personal fitness when social

effects of neighbors are removed but social effects on neighbors,

weighted by relatedness, are added. Hamilton (1964a) and oth-

ers (Grafen 2006, 2007; Gardner and Grafen 2009; Bijma 2010)

have argued that selection tends to maximize or optimize inclu-

sive fitness. However, measuring inclusive fitness is not always

straightforward, particularly for phenotypes (Grafen 1982; Creel

1990; Lucas et al. 1996; Queller 1996). It has even been suggested

that inclusive fitness may differ across traits, making the notion

of measuring an individual’s inclusive fitness impossible (Queller

1996).

Using our model, it can be shown that inclusive fitness can

be defined as a quantity belonging to an individual, even when

multiple traits are considered. Expressing Hamilton’s definition in

our multivariate notation, we can define relative inclusive fitness

as

winc = w − z′TβS + zTC−1
Az CAz′βS (28)

This definition holds when individuals interact in pairs. For larger

groups, the last two terms on the right-hand side should be

weighted by group size. Substituting our definition of relative

fitness (eq. 3), we see that

winc = α + zT
(
βN + C−1

Az CAz′βS

) + ε. (29)

Thus, an individual’s inclusive fitness depends upon its own traits,

nonsocial, and social selection acting on those traits, and the multi-

variate similarity between interacting pairs described by C−1
Az CAz′ .

This definition of inclusive fitness assumes that all pertinent traits

(i.e., all interacting phenotypes) have been measured. It is easy to

check that evolutionary change is reliably predicted using either

relative fitness or relative inclusive fitness, or
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�z̄ = cov(A,w) = cov(A,winc). (30)

We can explore how relatedness and IGEs affect relative

inclusive fitness by substituting equations (13–14) into equa-

tion (29) and simplifying,

winc = α + zT
[
βN + (I − �T�T)(I + RT�T)−1

× (RT + �T)(I − �T�T)−1βS

] + ε. (31)

Thus, if we are interested in estimating inclusive fitness, we must

consider both relatedness and IGEs in addition to nonsocial and

social selection. When relatedness is uniform across traits, this

simplifies to

winc = α + zT
[
βN + (I − �T�T)(I + r�T)−1

× (rI + �T)(I − �T�T)−1βS

] + ε. (32)

In the absence of IGEs this simplifies to

winc = α + zT(βN + rβS) + ε. (33)

This multivariate formulation reveals that, even in the absence of

IGEs, social selection is central to the estimation of Hamilton’s

original conception of inclusive fitness.

Discussion
The integration of selection and inheritance into a complete de-

scription of evolutionary change is usually simple and direct, as

epitomized by the well-known breeder’s equation (Lande 1979;

Falconer and MacKay 1996). Social interactions substantially

complicate this picture by generating covariances between geno-

types of individuals and the phenotypes and fitness of their inter-

actants. The results of our model demonstrate that to predict the

evolution of interacting phenotypes we must know (1) how the

genotypes of interacting individuals are related (whether through

pedigree relatedness, population subdivision, or trait-specific as-

sociations), (2) how the phenotypes of interacting individuals af-

fect one another’s expression, and (3) how the phenotypes of inter-

acting individuals socially affect fitness. These factors are above

and beyond the additive genetic (co)variance and the strength of

nonsocial selection, which must be measured to predict the evo-

lution of any trait, social or otherwise (Lande 1979; Lande and

Arnold 1983; Roff 1997; Kingsolver et al. 2001).

The equations presented here emphasize that social selection

generates evolutionary change through a genetic pathway distinct

from that responding to nonsocial selection (eq. 4b). Evolution-

ary response to social selection results only when the breeding

value of a focal individual covaries with the phenotype of a social

partner or social group. This is consistent with Queller’s (1992b)

general formulation of kin selection; however, our results demon-

strate that the critical covariance might emerge via two biologi-

cally disparate paths—through relatedness or through phenotypic

modification arising from IGEs. Although relatedness in this con-

text is most likely to result from pedigree relationships or popula-

tion subdivision, it is also conceivable that it reflects trait-specific

associations among individuals. To encompass this multivariate

possibility, we introduced the potentially asymmetric matrix R
that describes trait-specific relatedness. This matrix allows situa-

tions in which organisms form groups based on specific attributes,

such as in trait-group, greenbeard, and mate choice models to be

incorporated into a multivariate predictive equation (Hamilton

1964b; Wilson 1975; Dawkins 1976; Lande 1981; Wilson and

Dugatkin 1997; Pepper 2000; Grafen 2009; Gardner and West

2010).

Relatedness and IGEs have both independent and interactive

effects on the response to selection. Both social and nonsocial

selection is influenced by interacting phenotypes through the �

terms that account for linear and feedback influences on pheno-

types (eqs. 10 and 12). These feedback effects are particularly

exacerbated by group size and lead to dramatic increases in the

rate of evolutionary response (Fig. 2). IGEs provide an additional

contribution to the response to nonsocial selection when they

occur among related individuals. Nevertheless, IGEs and related-

ness have surprisingly independent and parallel contributions to

the response to social selection. Our derivation of an extended

Hamilton’s rule emphasizes this symmetry, and suggests that re-

latedness and reciprocity should have nearly equal influences on

the evolution of altruism (cf. Fletcher and Zwick 2006). Further-

more, because IGEs generate a covariance between interacting

individuals via a genetic path, � may be interpreted as a measure

of indirect genetic relatedness. This result generalizes previous re-

sults that show how maternal effects should alter the predictions

of Hamilton’s rule to interactions occurring within a generation

(Cheverud 1984; see Wolf 2003 for a similar treatment of this

problem using variance components).

It is essential to recognize that although both phenomena

originate through interactions among conspecifics, IGEs and so-

cial selection represent distinct mechanisms by which interacting

phenotypes influence evolutionary change. These effects occur

via different pathways (Fig. 1): social selection represents a di-

rect relationship between the phenotype of social interactants and

fitness, whereas IGEs influence fitness indirectly by influencing

phenotypic expression. Both processes can create feedback that

accelerates the rate of evolution, but on different time scales.

IGEs create feedback by affecting phenotypic expression within

a generation, thereby inflating the response to selection (Moore

et al. 1997). Social selection creates feedback across generations

because interacting phenotypes act simultaneously as targets and

agents of selection. As the traits that cause social selection evolve,

the next generation experiences a different social environment

than the previous one. This social environment provides the basis
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for selection, creating feedback in the evolution of the interact-

ing phenotype (West-Eberhard 1979; Lande 1981; West-Eberhard

1983; Moore et al. 1997; Wolf et al. 1999).

This concept of social selection (Wolf et al. 1999) can be

considered as a subset of the broader contextual models of mul-

tilevel selection (Goodnight et al. 1992; Queller 1992a; Bijma

et al. 2007a; Bijma and Wade 2008). Hamilton’s (1963, 1964a,b)

inclusive fitness models have often been thought of as an al-

ternative to multilevel selection as an explanation for the evo-

lution of social behavior. Hamilton (1975) recognized that in-

clusive fitness models may be expressed as multilevel selection

models, and subsequent analyses have demonstrated the mathe-

matical equivalence between the two frameworks (Wade 1980;

Queller 1992a; Bijma and Wade 2008). As demonstrated by

our treatment of Hamilton’s rule, considering IGEs and social

selection provides additional insights into the inclusive-fitness

framework. In addition, our model is composed of parameters

that can be measured empirically to test hypotheses about social

evolution.

EMPIRICAL APPLICATIONS

Of the components identified here as critical to understanding

evolutionary response to social selection, substantial empirical

progress has been made only for relatedness or population sub-

structure. There are a number of well-established methods for

measuring relatedness (Queller and Goodnight 1989; Ritland

1996; Lynch and Ritland 1999; Van de Casteele et al. 2001; Weir

and Hill 2002; Csilléry et al. 2006; Weir et al. 2006; Konovalov

and Heg 2008), and a wealth of data exists regarding relatedness

and genetic structure in natural populations (Strassmann et al.

1989; Hughes 1998; Merilä and Crnokrak 2001; Cole 2003; Lukas

et al. 2005; Leinonen et al. 2008).

There has been limited empirical investigation of IGEs,

particularly nonmaternal IGEs (McGlothlin and Brodie 2009;

Bleakley et al. 2010). Several recent studies have quantified IGEs

as components of variance (e.g., Wolf 2003; Muir 2005; Petfield

et al. 2005; Linksvayer 2006; Bergsma et al. 2008; Brommer and

Rattiste 2008; Ellen et al. 2008; Danielson-Francois et al. 2009;

Wilson et al. 2009), as changes in gene expression (Wang et al.

2008), as response to different genotypes (Linksvayer 2007; Kent

et al. 2008; Linksvayer et al. 2009), or indirectly from selection

lines (Moore et al. 2002; Chenoweth et al. 2010). Very few have

examined IGEs within the multivariate trait-based framework that

is necessary to identify the paths of influence between specific

traits in interacting partners (Mutic and Wolf 2007; Bleakley and

Brodie 2009; Galloway et al. 2009). New methodology for esti-

mating � (or its analog for maternal effects, M; Kirkpatrick and

Lande 1989) through components of quantitative genetic vari-

ance may address this paucity of data in the future (Galloway

et al. 2009; McGlothlin and Brodie 2009).

Social selection gradients can be measured in a straightfor-

ward way using multiple regression techniques similar to contex-

tual analysis (Heisler and Damuth 1987; Goodnight et al. 1992;

Okasha 2006). As a purely phenotypic process, estimation of so-

cial selection does not require knowledge of the covariance of

breeding values among interactants or other genetic information.

Simultaneous social and nonsocial selection can be measured us-

ing a simple extension of Lande and Arnold’s (1983) multiple

regression method to include the traits of social interactants or

groups in addition to those of the focal individual (Wolf et al.

1999). Depending on the population structure, investigators could

perform such analyses using equations (3), (15), or (16) as re-

gression models. Such an analysis differs subtly from traditional

contextual analysis, which tends to use the group mean (including

the focal individual) rather than the mean of the social interac-

tants to estimate selection gradients (Okasha 2006). A few studies

have used contextual analysis in plants (Stevens et al. 1995; Aspi

et al. 2003; Donohue 2003, 2004; Weinig et al. 2007) and ani-

mals (Tsuji 1995; Banschbach and Herbers 1996; McAdam and

Boutin 2003) but none have adopted the social selection approach

we describe here.

In addition to the relatively large sample sizes and reliable

estimates of individual fitness that are required for any study of

selection in a natural population, the measurement of social selec-

tion requires information on the phenotypes of social partners or

groups. However, large long-term selection datasets are becom-

ing increasingly common in evolutionary biology (Kruuk et al.

2001, 2002; Grant and Grant 2002). It is likely that many existing

datasets also contain information on social grouping that could

be used to measure social selection. We encourage empiricists

studying interacting phenotypes in natural populations to quan-

tify nonsocial and social selection so that the importance of each

may be determined.

ALTRUISM AND GREENBEARDS

To illustrate the applications of this theory, we present specific

worked examples derived from the multivariate equation pre-

sented in the text (eq. 12). We focus on situations in which nonso-

cial and social selection are in conflict, that is, where a trait is

beneficial to one individual in a pair but harmful to the other. We

present examples involving two traits to emphasize how IGEs and

social selection can lead to the coordinated evolution of interact-

ing phenotypes.

First, suppose an altruistic behavior, z1, benefits a recipient

at the expense of the actor, so that it is under negative nonsocial

selection (βN 1 < 0) and positive social selection (βS1 > 0). A

second trait, z2, is a visible morphological trait, such as a badge,

with no direct fitness consequences of its own (βN 2 = βS2 = 0).

However, individuals base their level of altruistic behavior on the

morphological trait of their partner based on the coefficient ψ12.
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This morphological badge is determined by direct genetic and

environmental effects, and is static within an individual.

We first assume that these two traits are genetically uncor-

related (G12 = 0) and that individuals assort at random (R = 0).

Using equation (12), the predicted evolutionary change in the two

traits can be expressed as

�z̄1 = G11βN1 + ψ12
2G22βS1 (34a)

and

�z̄2 = ψ12G22βS1. (34b)

The most obvious result is that the two traits are evolutionarily

coupled, even in the absence of direct genetic covariance. This

occurs via an interaction between the IGE of the cue on the

altruistic behavior and the social selection gradient of the behavior.

The evolution of altruism is not influenced by the sign of the IGE,

and will evolve whenever

−βN1 <
ψ12

2G22

G11
βS1. (35)

For altruism to evolve, ψ12, will have to be quite strong unless

the relative cost of performing the behavior (βN 1) is quite low. In

contrast, the evolution of the badge is determined by the sign of

the IGE. The badge that elicits altruism will increase when

0 < ψ12G22βS1. (36)

Here, the combination of social selection and an IGE provides evo-

lutionary feedback across generations. If the effect of the badge on

the elicitation of altruistic behavior is positive (ψ12 > 0), then the

two traits will tend to runaway together. However, if the badge’s

effect is negative (ψ12 < 0), the badge will evolve in the direction

opposite of the behavior it elicits.

Another result of the inequalities above is that the badge will

tend to evolve more quickly than the altruistic behavior it elicits.

This occurs because the cue is not subject to nonsocial selection

and because of the squared IGE coefficient in equation (34a).

We now allow individuals to assort nonrandomly based on

the morphological trait. This is similar to a greenbeard model

(Hamilton 1964b; Dawkins 1976; Gardner and West 2010), except

that we assume no genetic correlation between the behavior and

the badge. If individuals assort nonrandomly based solely on the

morphological trait, the matrix R is no longer zero. Rather, it

contains a single nonzero element, r22′ , that measures the strength

of the relationship between the breeding values of the badge of

the two interacting individuals. The evolution of the badge and

altruism is now predicted by

�z̄1 = (
G11 + r22′ψ12

2G22
)
βN1 + ψ12

2G22βS1 (37a)

and

�z̄2 = r22′ψ12G22βN1 + ψ12G22βS1. (37b)

Nonrandom assortment adds an effect of nonsocial selection on

the behavior to the evolution of the badge. Altruism now increases

when

−βN1 <
ψ12

2G22

G11 + r22′ψ12
2G22

βS1, (38)

and the badge increases when

−βN1 <
1

r22′
βS1. (39)

The evolution of the badge is no longer dependent on IGEs, but in-

stead depends upon the strength of assortment. Because this effect

appears in the denominator, strong positive assortment slows the

evolution of the cue. Positive assortment also decreases the rate of

evolution of altruism slightly. The evolution of badge-based altru-

ism is unlikely without genetic covariance between the behavior

and the badge.

When a genetic correlation exists between the behavior and

the badge, the evolution of the two traits is predicted by

�z̄1 = (
G11 + ψ12G12 + r22′ψ12G12 + r22′ψ12

2G22
)
βN1

+ (
ψ12G12 + ψ12

2G22
)
βS1 (40)

and

�z̄2 = (G12 + r22′ψ12G22)βN1 + ψ12G22βS1. (41)

The evolution of altruism is now predicted when

−βN1 <
ψ12G12 + ψ12

2G22

G11 + ψ12G12 + r22′ψ12G12 + r22′ψ12
2G22

βS1, (42)

and the badge increases when

−βN1 <
ψ12G22

G12 + r22′ψ12G22
βS1. (43)

Here, the evolution of both traits is dominated by the strength

of the IGE (ψ12). In practice, as the genetic covariance between

traits becomes stronger, it will be difficult to distinguish a situa-

tion such as the one above from a true greenbeard, where altruism

and the visible signal are associated with the same gene (Gardner

and West 2010). In the case in which the two traits become in-

distinguishable, their evolution will be predicted by the extended

Hamilton’s rule (inequality 25).

AGRESSION AND WEAPONS

As a second example, consider a two-trait system in which z1

is aggressive behavior. When individuals interact, their level of

aggression depends in part on the behavior of their partner (ψ11 �=
0). In fights, success is determined both by the aggression of the

focal individual (βN 1 > 0) and that of its partner (βS1 < 0).
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Success is also influenced by a morphological weapon (z2; βN 2 >

0, βS2 < 0). We assume aggressive behavior is not adjusted based

on the partner’s weapon (ψ12 = 0). (See Moore et al. 1997 eq. 23

for a similar example in the absence of social selection.) When

interactions occur at random (R = 0), the evolution of the two

traits is predicted by

�z̄1 = G11

(1 − ψ11)
(
1 − ψ11

2
) (βN1 + ψ11βS1) + G12

(1 − ψ11)
βN2

(44)

and

�z̄2 = G12

1 − ψ11
2

(βN1 + ψ11βS1) + G22βN2. (45)

As is the case in the absence of social selection, the feedback

effect of IGE on aggression magnifies the correlated evolution-

ary response of the weapon (Moore et al. 1997). However, the

IGE has an additional effect when social selection is present. As-

suming βS1 < 0, a negative ψ11 tends to lead to the evolution

of greater aggression via the social selection pathway, whereas

a positive ψ11 tends to lead to the evolution of less aggression.

Biologically, this means that a tendency to act submissively to

aggressive individuals leads to lead to an evolutionary increase in

mean aggression, whereas a tendency to escalate fights leads to

an evolutionary decrease in aggression. The evolutionary trajec-

tory of weapons, of course, will depend on the sign of the genetic

covariance as well.

Again, nonrandom assortment complicates matters further.

One biologically plausible scenario is that individuals choose

fighting partners based on a linear response to the size of their

weapons. This would lead to a correlation between breeding val-

ues for weaponry, r22′ , in which case the response to selection

would be predicted by

�z̄1 = G11

(1 − ψ11)
(
1 − ψ11

2
) (βN1 + ψ11βS1)

+ G12

1 − ψ11
(βN2 + r22′βS2) (46)

and

�z̄2 = G12

1 − ψ11
2

(βN1 + ψ11βS1) + G22(βN2 + r22′βS2). (47)

This is identical to the previous case, except now social selection

on weapon size contributes to evolutionary change. Its effect will

depend upon whether individuals assort positively (partners have

similar weapons) or negatively (partners have oppositely sized

weapons).

CONCLUSION

The results presented here, together with related theoretical work

on the genetic ramifications of social interactions (Griffing 1967,

1969, 1976, 1981a; Moore et al. 1997; Wolf et al. 1999; Bijma

et al. 2007a; Bijma and Wade 2008), demonstrate the importance

of IGEs and social selection in the evolution of social behavior

and other interacting phenotypes. Behavior, in particular, has long

been viewed as having a central role in evolution, and various au-

thors have considered it as both a facilitator and an inhibitor of

evolutionary change (Roe and Simpson 1958; Mayr 1963; Bateson

2004; Duckworth 2009). The interacting phenotype models pro-

vide a quantitative framework that demonstrates how this conjec-

ture can be true. IGEs and social selection provide mechanisms

by which behavior and other interacting phenotypes influence the

rate and direction of their own evolution. Both mechanisms can

greatly accelerate the rate of evolutionary change and, in some

cases, reverse the direction of evolution from that predicted in

their absence. Here, we have identified the critical parameters to

measure, allowing empiricists to test the importance of interacting

phenotypes in driving evolutionary change.
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Appendix A
EQUIVALENCE OF VARIANCE-COMPONENTS MODELS

OF IGEs

The framework of Griffing (1967, 1969, 1976, 1981a) and Bijma

and colleagues (Bijma et al. 2007a,b; Bijma and Wade 2008) ex-

presses IGEs as components of phenotypic variance rather than

using the trait-based framework followed above. These two frame-

works have been shown to provide equivalent measurements of the

strengths of IGEs (McGlothlin and Brodie 2009). Here, we derive

a multivariate version of the equation for evolutionary response

derived by Bijma and Wade (2008) and show its equivalence to

the trait-based equation.

In the variance-components framework, the total breeding

value is equal to the sum of the direct and social (i.e., indirect

genetic) breeding values. Expressed multivariately,

A = aD + aS, (A1)

where aD and aS are column vectors of direct and social breeding

values, respectively. The former is proportional but not equal to the

additive genetic value when IGEs display feedback (McGlothlin

and Brodie 2009). The latter can be thought of as a genetic value

for “social performance,” encompassing the social effects of all

of an individual’s traits. The phenotypic vectors of two interacting

individuals can be expressed as

z = aD + eD + a′
S + e′

S (A2a)

z′ = a′
D + e′

D + aS + eS, (A2b)

where eD and eS terms are environmental (or residual effects). As

above, primes designate effects belonging to a social partner of an

individual. Note that the focal individual is affected by the social

breeding value and environmental effect of its social partner, and

vice versa.

Substituting these definitions into equation (4a), and making

the standard quantitative genetic assumption of zero covariance

between breeding values and residuals, we find

�z̄ = cov
[
(aD + aS),

(
aT

D + eT
D + a′T

S + e′T
S

)]
βN

+ cov
[
(aD + aS),

(
a′T

D + e′T
D + aT

S + eT
S

)]
βS (A3a)

or in compact form,

�z̄ = (GD + GDS′ + GSD + GSS′ )βN

+ (GDD′ + GDS + GSD′ + GS)βS, (A3b)
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where terms designated by G represent (co)variance matrices be-

tween breeding direct and/or social values and primes distinguish

breeding values of the social partner from those of the focal indi-

vidual (McGlothlin and Brodie 2009). Equation (17) is an analog

of the trait-based equation (9). When interactants are related uni-

formly across traits, relatedness can be treated as a scalar, and

equation (17) simplifies to

�z̄ = (GD + rGDS + GSD + rGS)βN

+ (rGD + GDS + rGSD + GS)βS, (A4)

which is an analog of the trait-based equation (10) and a multi-

variate version of the general equation in table 4 of Bijma and

Wade (2008) when n = 2.

The equivalence of equations (10) and (A4) can be demon-

strated by substituting the definitions of GD, GDS, GSD, and GS

derived by McGlothlin and Brodie (2009). When assortment of

individuals occurs based on specific traits, equation (A4) can be

defined in terms of relatedness matrices,

�z̄ = (
GD + GDSRT

DS + GSD + GSRT
S

)
βN

+ (
GDRT

D + GDS + GSDRT
SD + GS

)
βS, (A5)

where each relatedness matrix is composed of partial regression

coefficients relating the direct and/or social breeding values of

the focal individual and its social partner. These matrices may

be estimated empirically using best linear unbiased predictors of

breeding values from an animal model analysis (Kruuk 2004).

In general, these relatedness matrices are not equal to R from

the trait-based model when IGEs are present. However, when all

relevant social traits have been measured, it can be shown that

RT
DS = RT

S and RT
D = RT

SD.

The equivalence of the variance-components and trait-based

models means either model may predict the correct multivari-

ate response to selection, if all relevant traits are included. Both

models demonstrate that a nonzero CAz′ may arise from relat-

edness, IGEs, or both. However, the symmetry between related-

ness and IGEs in their effects on the response to selection is as

not apparent in the variance-components model. Empirically, the

variance-components approach is advantageous because specific

interacting phenotypes need not be identified a priori to predict

responses to selection. If a set of candidate traits can be iden-

tified, the equivalences between the two theoretical frameworks

can be used to measure indirect genetic effects of specific traits

(Galloway et al. 2009; McGlothlin and Brodie 2009).

Appendix B
IGEs AND SOCIAL SELECTION IN LARGER GROUPS

Here, we derive the equation for response to social selection using

the model of IGEs in larger groups developed by McGlothlin and

Brodie (2009), which assumes nonoverlapping groups of equal

size. This treatment generalizes the results of Agrawal et al.

(2001). However, note that we consider the elements of G to

represent the parameters that could be measured in a current pop-

ulation considered globally, rather than those of a hypothetically

panmictic population (see Bijma et al. 2007a for a discussion of

this distinction). We also consider only linear IGEs, ignoring the

nonlinear effects discussed by Agrawal et al. (2001).

The phenotype of a focal individual can be represented as the

sum of its direct genetic and environmental effects and the sum

of the social effects of all the members of its group,

z = a + e + (n − 1)� z̄′, (B1)

where z̄′ represents the mean phenotype of the social group ex-

cluding the focal individual and n represents the group size. Each

individual is affected by the focal individual as well as all other

group members. Using superscript i to designate a particular social

interactant,

z′ i = a′ i + e′ i + (n − 1)� z̄′ − �z′ i + �z. (B2)

We can solve for z̄′ by taking the expectation of equation (B2):

z̄′ = ā′ + ē′ + (n − 1)� z̄′ − � z̄′ + �z. (B3)

To solve for an explicit definition of z, we first note that

(n − 1)� z̄′ = z − (a + e),

and therefore

z̄′ = ā′ + ē′ + [z − (a + e)] − (n − 1)−1[z − (a + e)] + �z.
(B4)

Now we can substitute this definition of z̄′ into the implicit defi-

nition of z.

z = a + e + (n − 1)�(ā′ + ē′) + (n − 1)�[z − (a + e)]

− �[z − (a + e)] + (n − 1)��z.

Simplifying, we find

z = a + e + (n − 1)�(ā′ + ē′)

+ (n − 2)�[z − (a + e)] + (n − 1)��z

and

z = [I − (n − 2)� − (n − 1)��]−1

× [a + e + (n − 1)�(ā′ + ē′) − (n − 2)�(a + e)]. (B5)

Using a similar process, we can explicitly define z̄′:

z̄′ = ā′ + ē′ + (n − 2)� z̄′ + �[a + e + (n − 1)� z̄′]
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and

z̄′ = [I − (n − 2)� − (n − 1)��]−1[ā′ + ē′ + �(a + e)].

(B6)

To calculate the total breeding value A, we take the expectation

of the equation (B1) over all social groups, ¯̄z = ¯̄a + (n − 1)� ¯̄z or
¯̄z = [I − (n − 1)�]−1 ¯̄a, and then define total breeding value as

each individual’s contribution to the population mean,

A = [I − (n − 1)�]−1a. (B7)

We can solve for � ¯̄z by substituting equations (B5–B7) into equa-

tion (17), resulting in equation (18). This result assumes related-

ness between the focal individual and the average group member

is uniform across traits; this assumption can be relaxed by replac-

ing all r with RT.

Similarly, in the variance-components framework, the total

breeding value is defined as a sum of direct and social components

A = aD + (n − 1)aS. (B8)

The focal and mean interactant phenotypes are defined as

z = aD + eD + (n − 1)(ā′
S + ē′

S) (B9)

and

z̄′ = ā′
D + ē′

D + (n − 2)(ā′
S + ē′

S) + aS + eS. (B10)

Substituting equations (B8–B10) into equation (17) and assuming

uniform relatedness across traits gives

� ¯̄z = [GD + r (n − 1)GDS + (n − 1)GSD + r (n − 1)2GS]βN

+ (n − 1)[rGD + (I + r (n − 2))GDS

+ r (n − 1)GSD + (I + r (n − 2))GS]βS. (B11)

This is the multivariate version of the general equation from table 4

in Bijma and Wade (2008). Substitution of the equivalences in

equations (25a-d) of McGlothlin and Brodie (2009) can be used

to demonstrate equivalence of the two frameworks. Nonuniform

relatedness can be dealt with as in the text by defining matrices

RD, RDS, RSD, and RS.
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