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Studies measuring natural selection acting via different components of fitness may provide insight into such central questions

in evolutionary biology as the evolution of life histories and sexual dimorphism. It is often desirable to combine estimates of

selection at different episodes to understand how they interact to produce total lifetime selection. When selective episodes are

sequential, total directional selection may be calculated by summing directional selection across episodes. However, it is unclear

whether lifetime nonlinear (e.g., stabilizing, disruptive, or correlational) selection may be similarly calculated using estimates of

quadratic selection from sequential episodes. Here, I show that lifetime quadratic selection depends not only upon the sum total of

quadratic selection across episodes but also upon the pattern of directional selection across episodes. In certain cases, the effects of

directional selection across episodes may cancel one another, leading to no net directional selection but strong stabilizing selection.

This result suggests that true stabilizing selection may be more common than previously thought, especially when the entire life

cycle is considered. The equations derived here are easily applicable to empirical data, as is illustrated both with a simulated

dataset and with a reanalysis of a study of quadratic selection in dark-eyed juncos.
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The methods for measuring phenotypic selection developed by

Lande and Arnold (1983) have generated a wealth of data con-

tributing to an understanding of how natural selection operates in

the wild (Endler 1986; Kingsolver et al. 2001). Although selection

acting via total lifetime fitness is most relevant for predicting the

trajectory of phenotypic evolution (Lande 1979), lifetime fitness

is notoriously difficult to measure. As a result, most studies mea-

suring selection in the wild focus on one or a few components

of fitness (Kingsolver et al. 2001). Despite their limited ability to

fully quantify natural selection, however, measurements of selec-

tion obtained using components of fitness are often informative.

For example, measuring and comparing selection via different

fitness components such as survival and reproduction can pro-

vide insight into the evolution of life histories (Arnold and Wade

1984a,b; Schluter et al. 1991; Hoekstra et al. 2001). In addition,

comparing selection via components of male and female fitness

can shed light on the evolution of sexual dimorphism (Price 1984;

Cox and Calsbeek 2009).

To explore how episodes of selection interact, investigators

may wish to combine estimates of selection across episodes into

a cumulative estimate of selection. The combination of estimates

of directional selection is relatively straightforward. When fit-

ness components are defined in such a way that they multiply

to lifetime fitness, selection at each episode may be combined

additively to achieve estimates of total lifetime selection (Arnold

and Wade 1984a). Fitness can often be partitioned into such mul-

tiplicative components. For example, total offspring production

may be separated into number of breeding seasons, number of

mates per year, and number of offspring per mate. Arnold and

Wade originally applied their results to both selection differentials

(s), which measure the covariance between phenotypes and rela-

tive fitness, and selection gradients (β), which measure the direct

relationship of traits to fitness when holding correlated traits con-

stant. However, it was later shown that a correction for changes in

the phenotypic variance–covariance matrix (P) must be applied

when adding selection gradients (Wade and Kalisz 1989). This

1 3 7 7
C© 2010 The Author(s). Journal compilation C© 2010 The Society for the Study of Evolution.
Evolution 64-5: 1377–1385



JOEL W. M CC GLOTHLIN

correction is necessary because the measurement of selection gra-

dients at a particular episode relies on P that may have been altered

by selection at earlier episodes (Lande and Arnold 1983).

These methods for adding selection across episodes were

derived solely for directional (linear) selection, not for nonlinear

or quadratic measures of selection (e.g., stabilizing, disruptive,

and correlational). Because the publication of a meta-analysis of

selection studies, which showed that measurements of nonlinear

selection, were relatively uncommon (Kingsolver et al. 2001), in-

terest in quadratic selection has grown (Blows and Brooks 2003;

Stinchcombe et al. 2008). Quadratic selection differentials (C)

and gradients (γ) describe the curvature of the fitness function

and are of particular interest because of their predicted effects on

the evolution of genetic variance and covariance (Lande 1980b;

Lande and Arnold 1983; Phillips and Arnold 1989). Few studies

have attempted to measure nonlinear selection using multiple fit-

ness components (e.g., Preziosi and Fairbairn 2000; McGlothlin

et al. 2005), but studies such as these are likely to be particularly

illuminating because of the intimate relationships between genetic

correlations (which may be shaped by correlational selection) and

life-history trade-offs (which may be shaped by variation in se-

lection across the life cycle). Thus, a method for adding estimates

of nonlinear selection is desirable.

Here, I derive equations relating lifetime nonlinear selec-

tion to selection that occurs via components of total fitness. This

derivation produces a method that can be used to add episodes

of selection to estimate lifetime nonlinear selection that is simi-

lar to the current methods used for directional selection (Arnold

and Wade 1984a,b; Wade and Kalisz 1989), with one important

difference. Namely, the analysis here shows that directional se-

lection across episodes contributes to total quadratic selection,

even when net directional selection is zero. I demonstrate how to

employ this method using two examples: a simulated dataset with

four consecutive selective episodes and a reanalysis of data from

a long-term study of dark-eyed juncos (McGlothlin et al. 2005).

Adding Nonlinear Selection
Arnold and Wade (1984a) derived a generalized method for adding

selection across episodes, showing that phenotypic change due

to selection in one generation, stotal (a column vector of consisting

selection differentials, si, for each trait i) could be partitioned into

additive components due to selection in each episode k of m total

selective episodes. Expressed symbolically,

stotal =
∑

sk, (1)

where

si,k = 1

W̄k
Cov(zi,k, Wk) (2)

and Wk is a component of absolute fitness at episode k. Selection

differentials may be added in this way if the components of fitness

at each episode multiply to give lifetime fitness, W total.

Unlike selection differentials, the estimation of selection gra-

dients, which estimate the direct relationship between traits and

fitness when controlling for correlated traits, depends upon the

pattern of variance and covariance in P. Wade and Kalisz (1989)

demonstrated that it is necessary to correct for changes in P across

the life cycle to estimate the total selection gradient. The total se-

lection gradient is thus given by

βtotal = P−1
0

∑
Pkβk, (3)

where P0 is the phenotypic (co)variance matrix before all selec-

tion and Pk is the phenotypic (co)variance matrix before selection

episode k. Because nonlinear selection gradients are measured

using the same multiple regression method as is used for direc-

tional selection, changes in P are also likely to be important for

estimating lifetime nonlinear selection.

To derive equations for relating lifetime quadratic selection

differentials (C total) and gradients (γtotal) to their components, I

will follow an approach similar to that used by Arnold and Wade

(1984a). I begin by partitioning the total change in P due to

selection across the life cycle into the sum of changes at each

episode,

�Ptotal =
∑

�Pk . (4)

Lande and Arnold (1983) showed that this change can be

expressed as a function of selection differentials,

�Ptotal = Ctotal − stotal sT
total, (5)

where C represents a square matrix of quadratic selection differ-

entials Cij and T denotes matrix transposition. Similarly, change

in P at the kth episode of selection can be expressed as

�Pk = Ck − sksT
k (6)

Substituting equations (5) and (6) into equation (4) and rear-

ranging, one finds

Ctotal =
∑

Ck −
∑

sksT
k + stotal sT

total, (7)

or equivalently,

Ctotal =
∑

Ck +
∑

k �=l
sksT

l . (8)

The analogous equation for selection gradients may be solved

by noting that by definition (Lande and Arnold 1983),

s = Pβ (9a)

and assuming multivariate normality of z,

C = PγP. (9b)
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By using equations (9) to define sk, stotal, Ck, and Ctotal as

a function of selection gradients, substituting these terms into

equation (7), and rearranging, it can be shown that

γtotal = P−1
0

[∑
Pk

(
γk − βkβ

T
k

)
Pk

]
P−1

0 + βtotal βT
total, (10)

or equivalently,

γtotal = P−1
0

⎡
⎣∑ (

PkγkPk
) +

∑
k �=l

Pkβkβ
T
l Pl

⎤
⎦ P−1

0 . (11)

Mathematica notebooks for performing the necessary calcu-

lations to add selection differentials and gradients are provided as

Supporting Information.

It is clear from equations (7–8) and (10–11) that total nonlin-

ear selection is not simply the sum of nonlinear selection gradi-

ents at each episode. Rather, directional selection in each episode

contributes to the total curvature of fitness function, creating a

nonzero C total or γtotal even when all Ck or γk equal zero. Using

equation (8), consider the single-trait case with two episodes pure

directional selection (all Ck = 0). It is easy to see that when s1 and

s2 are of the same sign, the total quadratic selection differential

will have a disruptive character (C total > 0), but if s1 and s2 are of

opposite signs, it will have a stabilizing character (C total < 0). In

the special case where s1 = −s2, there will be no total directional

selection (eq. 1), but C total will be less than zero, leading to true

stabilizing selection across the life cycle.

Lifetime correlational selection may also arise from direc-

tional selection acting on two traits in different episodes. One

instructive case to consider is when directional selection acts

in opposite directions but identical magnitudes in two sequen-

tial episodes (sT
1 = [s,−s], sT

2 = [−s, s]). This situation leads to

zero net directional selection, but net stabilizing selection on both

traits and positive correlational selection on the combination of

the traits,

Ctotal =
[−2s2 2s2

2s2 −2s2

]
.

If one wishes to use canonical rotation to interpret γtotal

(Blows and Brooks 2003; Blows 2007), effects of changes in

P and of directional selection should be taken into account before

canonical rotations are performed, as both factors will influence

the eigenvalues and eigenvectors of γ total.

Assigning statistical confidence to calculations performed

using equations (7–8) and (10–11) is not straightforward. In

general, testing statistical significance of measures of selection

presents a problem because fitness components are almost never

normal, leading to violation of the assumptions of statistical test-

ing in ordinary least squares regression (Mitchell-Olds and Shaw

1987). Although using generalized linear models and resampling

methods may circumvent this problem for individual analyses,

adding measures of selection presents additional complications,

in that the error of a summed selection differential or gradient

depends upon the cumulative error of multiple analyses. One so-

lution is to use the addition of selection gradients as a heuristic

tool to interpret results, leaving statistical testing to the individual

components (as is commonly done for the predicted response to

selection, e.g., McGlothlin et al. 2005). A second newly available

solution is to use aster models to estimate the strength and form of

total selection (Geyer et al. 2007; Shaw et al. 2008). Aster mod-

els explicitly model statistical dependence of sequential episodes

and use compound distributions to assign statistical confidence

to the total fitness landscape (Shaw et al. 2008). If both param-

eter estimates (differentials or gradients) and the shape of the

fitness landscape are of interest, aster analyses may be performed

alongside the calculations presented here.

Selection in Males and Females
Another common application of Lande and Arnold’s method in-

volves measuring selection acting separately on males and fe-

males (reviewed in Cox and Calsbeek 2009). When male and

female traits are quite different, it is often useful to consider

them as separate traits. However, if the male and female traits

are fairly similar, one may wish to treat them as the same trait

and to add selection on males and females (e.g., McGlothlin et al.

2005).

Adding selection in males and females is not strictly the

same as adding selection across the life cycle, as male fitness and

female fitness do not multiply to total fitness, and selection on the

sexes occurs simultaneously rather than sequentially. To address

this, I consider Lande’s (1980a) model for the evolution of sexual

dimorphism:

[
�z̄m

�z̄f

]
= 1

2

[
Gm B
BT Gf

] [
P−1

m sm

P−1
f sf

]
, (13)

where m denotes male, f denotes female, and B is the matrix

of cross-sexual genetic covariance, and the multiplier 1/2 arises

because each offspring has one father and one mother. To treat

male and female traits as the same traits, several assumptions are

necessary. First, one must assume that Gm = Gf . A measurement

of G independent of sex can be obtained by including sex as a fixed

effect in an animal model (McGlothlin et al. 2005). In addition,

one must estimate a common P for the two sexes and assume that

genetic correlations between the sexes are large (rmf ≈ 1), so that

Gm = Gf = B. Making these assumptions,

[
�z̄m

�z̄f

]
= 1

2

[
G G
G G

][
P−1

0 sm

P−1
0 sf

]
. (14)
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Multiplying,

�z̄m = �z̄f = 1

2
GP−1

0 (sm + sf ) = 1

2
GP−1

0 (Pmβm + Pfβf ).
(15)

Noting that �z̄ = 1
2 (�z̄m + �z̄f ) = GP−1

0 stotal, the total

force of selection on males and females can thus be written as

stotal = 1

2
(sm + sf ), (16)

or

βtotal = 1

2
P−1

0 (Pmβm + Pfβf ). (17)

A similar approach can be followed to find the total effect

of nonlinear selection using the equation for within-generation

change in G. Making the same assumptions,[
�Gm

�Gf

]
= 1

2

[
G G
G G

]([
P−1

0 (Cm)P−1
0 0

0 P−1
0 (Cf )P−1

0

]

−
[

P−1
0 (smsT

m)P−1
0 0

0 P−1
0

(
sfsT

f

)
P−1

0

]) [
G G
G G

]
.

(18)

Expanding, it can be shown that

�Gm = �Gf = 1

2
GP−1

0

(
Cm + Cf − smsT

m − sfsT
f

)
P−1

0 G.

(19)

Noting that �G = 1
2 (�Gm + �Gf ) = GP−1

0 (Ctotal −
stotalsT

total)P
−1
0 G, the total effect of nonlinear selection on males

and females is

Ctotal = 1

2

(
Cm + Cf − smsT

m − sfsT
f

)
P−1

0 + stotalsT
total. (20)

or

γtotal = 1

2
P−1

0

[
Pm

(
γm − βmβT

m

)
Pm

+ Pf
(
γf − βfβ

T
f

)
Pf

]
P−1

0 + βtotalβ
T
total. (21)

This derivation arrives at the same result as equations (7) and

(10) except that here, nonlinear selection in each sex is averaged

instead of summed. These can equivalently be expressed as

Ctotal = 1

2
(Cm + Cf ) − 1

4
(sm − sf )(sm − sf )

T (22)

and

γtotal = 1

2
P−1

0

[
PmγmPm + PfγfPf

−1

2
(Pmβm − Pfβf )(Pmβm − Pfβf )

T
]
P−1

0 . (23)

In contrast to the equation for summing selective episodes,

this formulation shows that directional selection does not give

rise to curvature unless it acts differently on males and females.

For a single-trait case, any sex difference in directional selection

creates stabilizing selection, which should tend to reduce available

genetic variance.

By a similar process, one could derive equations summing

simultaneous selection on the same traits in different environ-

ments, assuming no genotype-by-environment interaction (Via

and Lande 1985). In this case, selection in each environment

would be weighted not by 1/2 but by the frequency with which

each environment occurs.

Simulated Data
To illustrate how directional selection in different episodes can

give rise to nonlinear selection, I used PASW Statistics 17 (SPSS

Inc, Chicago, IL) to simulate a population of 1000 individuals with

a single phenotype z with an expected normal distribution of μ =
0 and σ2 = 1. The resulting simulated sample was distributed as

z̄ = 0.017, s2 = 0.926. I then applied four sequential episodes of

viability selection by generating at each episode a second variable

proportional to z and an error term, which was added so that the fit-

ness function would not represent truncation selection. In episodes

1 and 3, the top 80% was selected to survive, and in episodes 2 and

4, the bottom 80% was selected to survive. Fitness was assigned as

1 or 0 based on survival and divided by average fitness to calculate

relative fitness (w). Then, I measured selection in each episode

as sk = cov(wk, zk) and Ck = cov[wk, (zk − z̄k)2] and total selec-

tion as stotal = cov(wtotal, z1) and Ctotal = cov[wtotal, (z1 − z̄1)2].

Total relative fitness (w total) was calculated based on survivorship

through all episodes. Similarly, directional selection gradients (β)

were measured using univariate linear regressions and stabilizing

selection gradients (γ) were measured using bivariate linear re-

gressions that included z and (z − z̄)2. The regression coefficient

from the squared deviation term was doubled to give γ (Lande and

Arnold 1983; Stinchcombe et al. 2008). Measured total selection

was compared to total selection calculated using equations (1),

(3), (7), and (10).

Results are presented in Table 1, with cubic spline fits from

glms version 4.0/glmsWIN version 1.0 (Schluter 1988) shown in

Figure 1. For all totals except γ, the calculated value was identi-

cal to the measured value to three decimal places. The estimates

for γ were further apart, likely because there tended to be some

collinearity between z and (z − z̄)2, creating error in estimating the

quadratic term. Inspection of these results indicates that oscillat-

ing directional selection across episodes canceled out, leading to

no total directional selection. Total selection was strongly stabiliz-

ing. Some of this effect was due to the sigmoid fitness functions in

each episode, which all had negative curvature (
∑

Ck = −0.325.

However, variation in directional selection also contributed to

stabilizing selection, decreasing C total by 0.123. The reason for

this is clear. When viability selection fluctuates in direction
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Table 1. Means, variances, and measurements of linear and nonlinear selection for a simulated population of 1000 individuals subject

to four episodes of viability selection. See text for definition of variables.

k z̄ P s C β γ

1 0.017 0.926 0.221 −0.110 0.239 −0.139
2 0.238 0.767 −0.211 −0.132 −0.275 −0.190
3 0.027 0.591 0.142 −0.037 0.240 −0.084
4 0.169 0.534 −0.142 −0.046 −0.266 −0.193
Final 0.027 0.468
Total (measured) 0.010 −0.458 0.011 −0.547
Total (calculated) 0.010 −0.458 0.011 −0.523

Figure 1. Cubic spline representations of four episodes of viability selection from a simulated population of 1000 individuals (A–D)

and the cumulative effect of selection (E). Fitness (W) was assigned as either zero or one. Data points between zero and one represent

average fitness of individuals with the same phenotype. The solid line shows predicted fitness, and the dashed lines represent ± 1 SE

calculated with bootstrapping.
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Table 2. Off-diagonal elements (Pij) of phenotypic (co)variance

matrices (P) from a study of selection in dark-eyed juncos. The

diagonal elements of each matrix are equal to unity because traits

were standardized before each analysis. The consensus matrix for

males and females is calculated from a multivariate animal model

with sex as a fixed effect (McGlothlin et al. 2005). All other matrices

are from subsets of the population upon which each episode of

selection was measured.

Pij
Analysis

Wing/ Wing/ Tail/
Tail Tail white Tail white

Consensus 0.460 0.090 0.090
Male juvenile survival 0.496 −0.014 0.012
Male adult survival 0.514 −0.019 −0.006
Male mating success 0.627 0.158 −0.048
Male fecundity/mate 0.652 0.038 −0.090
Female juvenile survival 0.423 −0.019 0.040
Female adult survival 0.408 −0.030 0.025
Female mating success 0.453 0.029 0.097
Female fecundity/mate 0.433 0.039 0.145

across episodes, individuals in the middle of the phenotypic dis-

tribution will tend to be more likely to survive the entire time

span.

This simulation also illustrates the importance of correct-

ing for changes in phenotypic variance when calculating esti-

mates of γ total. Simply adding the values of γk would overesti-

mate the strength of stabilizing selection (�γk = −0.605). This

problem would be exacerbated if the contribution of directional

selection were added without taking change in P into account

(
∑

γk + ∑
k �=l βkβl = −0.861).

Table 3. Summed selection gradients for males, females, and sexes combined from a study of dark-eyed juncos. Selection gradients

from Table 3 in McGlothlin et al. (2005) were added using the equations derived in this article. See text for calculation of standard errors.

γ

β Wing length Tail length Tail white

Males (n=1431)
Wing length 0.104±0.143 0.114±0.316
Tail length −0.030±0.144 0.061±0.287 0.025±0.360
Tail white 0.117±0.108 0.270±0.159 −0.064±0.164 0.111±0.188

Females (n=1329)
Wing length −0.150±0.111 0.305±0.188
Tail length 0.264±0.133 −0.087±0.175 0.186±0.216
Tail white 0.085±0.103 0.121±0.131 −0.185±0.157 0.074±0.161

Sexes combined (n=1380)
Wing length −0.042±0.091 0.169±0.183
Tail length 0.123±0.098 0.005±0.168 0.095±0.210
Tail white 0.099±0.074 0.167±0.103 −0.127±0.114 0.070±0.124

Selection in Dark-Eyed Juncos
To show how the method of adding quadratic selection gradients

may be applied to real data, I present a reanalysis of a study

of selection in male and female dark-eyed juncos (Junco hye-

malis) (McGlothlin et al. 2005). Selection was measured sepa-

rately in each sex at four different episodes: juvenile survival,

adult survival, mating success, and offspring per mate. The selec-

tion gradients were originally reported in Table 3 of McGlothlin

et al. (2005). As required for quadratic selection analysis, the

diagonal elements of γ were calculated by doubling coefficients

from squared terms in the multiple regression (Lande and Arnold

1983; Stinchcombe et al. 2008). One of these terms was reported

incorrectly in the original paper (correct value for γwing length2 =
−0.022), but the correct value was used in further calculations in

that paper. Standard errors for each analysis were estimated using

delete-one jackknifing.

To investigate the total effect of selection, directional and

nonlinear gradients were originally added without using the cor-

rection factor of Wade and Kalisz (1989) or the method derived

here. As shown above, this can lead to inaccurate estimates of

total nonlinear selection. I recalculated the summed gradients for

each sex using equations (3) and (10) and for sexes combined

using equations (17) and (21). Values for P are given in Table 2,

and newly calculated summed selection gradients are shown in

Table 3. As statistical testing is not of primary interest here, I

reproduce the estimated standard errors from the original paper.

Standard errors for the summed selection gradients for males

and females were calculated from the jackknifed standard errors

as
√∑

SE2
k . The standard errors for the combined analysis of

males and females were miscalculated in the original paper, lead-

ing to overconfidence in these estimates. Here, they are shown as
1
2

√
SE2

m + SE2
f .
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Table 4. Evolutionary predictions from combined-sex selection

gradients in Table 3 and an estimate of G from McGlothlin et al.

(2005).

�G
�z̄

Wing Tail Tail
length length white

Wing length 0.041 0.034
Tail length 0.054 0.031 0.042
Tail white 0.045 0.025 0.002 0.045

In general, directional selection was weak, and the results

using the Wade–Kalisz correction did not differ substantially from

the originally reported results. Nonlinear selection gradients were

more strongly affected by correcting for changes in P and the

contribution of β. Because of the overall weakness of directional

selection in this study, most of this effect arose from correcting

for changes in P; recalculating the values in Table 3 without β led

to an average absolute difference of only 0.011.

For males, correlational selection acting on wing length and

tail white, which provided the major result from the original pa-

per, was still quite strong, but the value was slightly lower than

the value reported in the original paper (γ = 0.346). The other

correlational selection gradients were also weaker than the orig-

inally reported results. For females, the changes in γ were not

as large, most likely because P did not vary as much across se-

lection episodes (Table 2). When examining selection summed

across both sexes, the differences between the two studies largely

reflected the effects of selection on males.

Despite the differences between the estimates of β and γ,

the predicted responses to selection using the estimate of G from

the original paper and the equations �z̄ = Gβtotal and �G =
G(γtotal − βtotal β

T
total)G (which predicts within-generation change

in G, Phillips and Arnold 1989) did not differ substantially from

the original results (Table 4).

Discussion
The equations derived here and their application to simulated

and real data show the importance of considering changes in the

phenotypic (co)variance matrix and the effects of directional se-

lection when adding quadratic selection gradients across episodes

of selection. As is the case for directional selection (Wade and

Kalisz 1989), correcting for changes in P has the effect of dimin-

ishing the importance of later episodes of quadratic selection, as

is illustrated by the junco dataset.

Perhaps the most interesting result, however, is that di-

rectional selection acting in different episodes can lead to net

quadratic selection, even in the absence of quadratic selection at

each episode. It was already well known that purely directional fit-

ness functions can lead to the measurement of quadratic gradients

that may be incorrectly interpreted as stabilizing or disruptive

selection were the fitness function not plotted (Schluter 1988;

Brodie et al. 1995). However, the ability of fluctuating directional

selection to generate true stabilizing selection has not generally

been appreciated. For example, in an exploration of the net effect

of male–male competition and female mate choice, Hunt et al.

(2009) suggest that opposing directional selection through these

two components of sexual selection may maintain variance in

the sexually selected traits. The equations here suggest that this

situation should lead to net stabilizing selection, which should

have the effect of reducing, rather than maintaining, genetic

variance.

This analysis may also explain why strong stabilizing selec-

tion is rarely measured in natural populations (Kingsolver et al.

2001). Most studies of natural selection measure selection acting

via one or a few components of fitness because of the difficulty

of estimating lifetime fitness. Directional selection seems to be

very common when selection is measured in natural populations,

whereas quadratic selection is generally found to be weak (King-

solver et al. 2001). Furthermore, disruptive selection gradients are

found as often as stabilizing selection, despite theoretical predic-

tions that stabilizing selection should be common in populations

well-adapted to their current environmental conditions (Travis

1989; Kingsolver et al. 2001; Hansen and Houle 2004; Estes and

Arnold 2007)

As I have shown here, the commonality of directional selec-

tion acting via components of fitness does not negate the possibil-

ity of stabilizing selection over the entire life cycle. It is possible

that directional selection that fluctuates across the life cycle, due

to environmental variation or life-history trade-offs, for example,

predominates in natural populations. If so, stabilizing selection

should be common when total lifetime selection is measured.

The equations derived here also demonstrate that fluctuating

directional selection may give rise to lifetime correlational selec-

tion, which is predicted to affect the evolution of genetic corre-

lations between traits (Lande 1980b; Brodie 1989; Phillips and

Arnold 1989; Brodie 1992; Sinervo and Svensson 2002; McGloth-

lin et al. 2005). Life-history trade-offs are often characterized by

conflicting directional selection pressures at different stages of the

life cycle (Schluter et al. 1991). The physiological mechanisms,

such as hormones, that underlie life-history trade-offs are also

often responsible for integrating suites of correlated traits (Ket-

terson and Nolan 1992, 1999; Adkins-Regan 2005). Correlational

selection has been suggested as an evolutionary mechanism for

the maintenance of such suites (McGlothlin and Ketterson 2008).

The results presented here suggest that such correlational selection

may tend to arise as a consequence of life-history trade-offs.
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Supporting Information
The following supporting information is available for this article:

Adding_selection_differentials. Mathematica notebook for performing the calculations in the text.

Adding_selection_gradients. Mathematica notebook for performing the calculations in the text.

Supporting Information may be found in the online version of this article.

Correction made after 1/10/2010 publication: Equations 13, 14, and 23 had formatting errors in the previous version.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied by the

authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
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Correction for McGlothlin (2010)
In a recent paper (McGlothlin 2010), I extended the method of combining selection gradients from multiple episodes of selection, first

developed by Arnold and Wade (1984) and Wade and Kalisz (1989), to include nonlinear selection gradients. A mistaken assumption

led to an error in the section of that paper regarding selection on males and females. My original equation (18) made the implicit

assumption that the total change in the phenotypic (co)variance matrix P could be expressed as an average of the change in each sex, or

�Ptotal = 1

2
(�Pm + �Pf ). (1)

This assumption, which led to the initial conclusion that sexually antagonistic directional selection should create negative curvature

in the fitness surface, can be shown to be incorrect using an extreme case with strong sexually antagonistic selection. Consider a

population consisting of two equally frequent morphs that do not differ between the sexes. Scoring the phenotypic values of the two

morphs as 0 and 1, the phenotypic variance before selection is Ptotal = Pm = Pf = 0.25. If all males with z = 0 and all females

with z = 1 survive and the rest die, viability selection removes all variance within each sex, and so �Pm = �Pf = −0.25. However,

assuming an equal sex ratio, the overall variance in the population does not change because each morph is still equally common;

thus �Ptotal = 0, disproving equation (1). Further, the selection differentials in this example are sm = −0.5, sf = 0.5, and stotal = 0,

suggesting that the change in variance due to directional selection should be a function of stotal. Indeed, the correct portion of �Ptotal

due to sex-specific directional selection, given as a multivariate equation for generality, is simply −stotalsT
total or − 1

4 (sm + sf )(sm + sf )T

(Lande 1980; McGlothlin 2010).

Through a trivial derivation using the definition of covariance, the total contribution of nonlinear selection in males and females

can then be shown to be simply

Ctotal = 1

2
(Cm + Cf ), (2)

where each C is a matrix of quadratic selection differentials. Expressed using nonlinear selection gradients (γ) instead of differentials,

γtotal = 1

2
P−1

0 (PmγmPm + PfγfPf )P−1
0 . (3)

Equations (2) and (3) are exact only when the sex-specific phenotypic means are equal or are transformed to be so. Equation (2) replaces

original equations (20) and (22) from McGlothlin (2010), and equation (3) replaces original equations (21) and (23). Original equations

(20–23) had suggested a contribution of directional selection to total nonlinear selection, which is clearly not the case in equations (2)

and (3). The correction in equation (3) also slightly affects my reanalysis of a dataset from McGlothlin et al. (2005). The results of these

new calculations are presented in Table 1.

Using Lande and Arnold’s (1983) equation �Ptotal = Ctotal − stotalsT
total, the total change in phenotypic variance due to sex-specific

quadratic and directional selection expressed in differentials is then

�Ptotal = 1

2
(Cm + Cf ) − 1

4
(sm + sf )(sm + sf )

T (4)

or expressed in gradients,

�Ptotal = 1

2
(PmγmPm + PfγfPf ) − 1

4
(Pmβm + Pfβf )(Pmβm + Pfβf )

T, (5)

where P0 is the consensus phenotypic (co)variance matrix before selection. Equations (4) and (5) are not derivable from the false

equation (1) because of the interaction between male and female directional selection.

Unlike sequential episodes of selection, variation in directional selection does not contribute to Ctotal or γtotal when selection acts

differently on males and females. The difference between the two cases arises because when selection episodes are sequential, the

fitness of a given phenotype may differ between episodes, and these fitness effects accrue across the life cycle. When selection fluctuates

in its direction, the phenotypes in the middle of the distribution do the best because it is better to always be average rather than to

1 5 2 1
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ERRATUM

Table 1. Recalculation of total (male + female) nonlinear selection gradients and predicted change in the G matrix from a study of

dark-eyed juncos (McGlothlin et al. 2005; McGlothlin 2010). These results replace the original Table 3 (section 3) and Table 4 (section 2) in

McGlothlin (2010).

γtotal

Wing length Tail length Tail white

Wing length 0.187
±0.183

Tail length −0.015 0.119
±0.168 ±0.210

Tail white 0.169 −0.129 0.070
±0.103 ±0.114 ±0.124

�Gtotal

Wing length Tail length Tail white

Wing length 0.034
Tail length 0.031 0.044
Tail white 0.025 0.001 0.046

be extremely good sometimes and extremely bad at other times. The cumulative effects of directional selection that fluctuates in its

direction thus create stabilizing selection (McGlothlin 2010). However, an analogous effect does not occur in sex-specific selection

because a given phenotype never experiences both male-specific and female-specific selection, only one or the other. The effects of

opposing sex-specific selection thus cancel each other out instead of creating curvature.

As a result, sexually antagonistic selection will not tend to decrease genetic variation as I argued in the original paper. The

implication of equations (4) and (5) is that sexually antagonistic directional selection in males and females will tend to ameliorate the

diminishing effect of directional selection on overall genetic variance, thus tending to preserve polymorphism in some cases as predicted

by population genetic theory (e.g. Kidwell et al. 1977; Hedrick 1999; Rice and Chippindale 2001). This is a classic prediction for

environmental variation as well (e.g., Hedrick et al. 1976). As suggested in the original paper, the total effect of environment-specific

nonlinear selection can be estimated by modifying the sex-specific equation, replacing 1/2 with the frequency that an environment is

experienced. However, the corrections introduced here indicate that, as expected by population genetic theory, differences in directional

selection in simultaneously experienced environments do not create a stabilizing effect.
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