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Indirect genetic effects (IGEs), which occur when phenotypic expression in one individual is influenced by genes in another

conspecific individual, may have a drastic effect on evolutionary response to selection. General evolutionary models of IGEs have

been developed using two distinct theoretical frameworks derived from maternal effects theory. The first framework is trait-based

and focuses on how phenotypes are influenced by specific traits in a social partner, with the strength of interactions defined by

the matrix �. The second framework partitions total genetic variance into components representing direct effects, indirect effects,

and the covariance between them, without identifying specific social traits responsible for IGEs. The latter framework has been

employed more commonly by empiricists because the methods for estimating variance components are relatively straightforward.

Here, we show how these two theoretical frameworks are related to each other and derive equations that can be used to translate

between them. This translation leads to a generalized method that can be used to estimate � via standard quantitative genetic

breeding designs or pedigrees from natural populations. This method can be used in a very general set of circumstances and is

widely applicable to all IGEs, including maternal effects and other interactions among relatives.
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Quantitative genetic theory has provided a useful framework for

studying the process of phenotypic evolution in both laboratory

and natural populations (Falconer and MacKay 1996; Roff 1997;

Lynch and Walsh 1998; Kruuk 2004). In standard quantitative

genetic theory, phenotypic variance is partitioned into heritable

(additive genetic) and nonheritable components. Measures of ad-

ditive genetic variance, or its multivariate analog, the additive

genetic variance–covariance matrix (G), may be used to make

short-term predictions about how a population should respond to

phenotypic selection (Lande 1979; Lande and Arnold 1983). Fur-

thermore, the pattern of covariation in G represents the degree to

which traits should evolve together and has been interpreted as a

measure of both integration and constraint (Merilä and Björklund

2004).

In certain circumstances, this standard model must be altered

to accommodate complex patterns of inheritance that may influ-

ence a population’s response to selection (Arnold 1994). One

such case occurs when trait expression is affected by not only

an organism’s own genes but also those of a conspecific. Such

indirect genetic effects (IGEs) may occur among related or unre-

lated individuals, and include the special case of maternal effects

(Cheverud and Moore 1994; Moore et al. 1997; Mousseau and

Fox 1998; Wolf et al. 1998; Räsänen and Kruuk 2007). From the

perspective of a given focal individual, an IGE may be thought

of as an environmental effect. However, this environment is par-

tially determined by the social partner’s genes, and may thus

contribute to an evolutionary response to selection. Theoretical

models of maternal effects and other IGEs have shown that they
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may often have drastic effects on the rate and direction of evolu-

tion (Kirkpatrick and Lande 1989; Lande and Kirkpatrick 1990;

Moore et al. 1997; Bijma and Wade 2008).

General evolutionary models of IGEs have been constructed

within two theoretical frameworks, following a historical di-

chotomy in maternal effects theory (reviewed in Cheverud and

Moore 1994; Lynch and Walsh 1998). The first generalized model

of IGEs was developed in a series of papers by Griffing (1967,

1969, 1976, 1981; see also Bijma et al. 2007a; Bijma and Wade

2008). Griffing’s approach to indirect, or “associative,” genetic

effects resembles maternal effects theory developed by Willham

(1963, 1972), and more recently, by Cheverud (1984; Cheverud

and Moore 1994) and Lynch (1987). As in Willham’s models,

Griffing’s framework partitions total heritable variance into a di-

rect component, which arises from an individual’s own genotype,

and an indirect component, which arises from interactions among

individuals that may or may not be related. A second approach

was developed by Moore et al. (1997), following maternal-effects

theory by Falconer (1965) and Kirkpatrick and Lande (1989).

This framework was trait-based, defining IGEs as variation in the

expression of a focal individual’s traits caused by one or more spe-

cific heritable traits in an interacting individual. Together, the traits

expressed in the two individuals are called interacting phenotypes.

The strength of IGEs in the trait-based framework is determined

by �, a square matrix of regression coefficients that is analogous

to M, the matrix of maternal effect coefficients (Kirkpatrick and

Lande 1989; Moore et al. 1997). Either approach may be used to

predict the relative importance of direct and indirect sources of

genetic variance influencing a character, and each has its advan-

tages and disadvantages (Cheverud and Moore 1994; Wolf et al.

1998). For example, the variance-components approach has the

advantage of not requiring the identification of specific traits that

influence expression and so may be less sensitive to the exclusion

of unknown or unmeasured traits. However, trait-based formu-

lations are required to analyze how interactions among specific

traits affect phenotypic evolution.

The variance-components framework has been more com-

monly employed in empirical studies of maternal effects, because

relevant parameters may be estimated using laboratory breeding

designs or natural pedigrees (Lynch and Walsh 1998; Roff 1998;

Räsänen and Kruuk 2007). Muir (2005) and Bijma et al. (2007b)

have demonstrated that analogous methods allow for the mea-

surement of IGEs among unrelated individuals. To date, most of

the empirical studies attempting to measure such IGEs have used

this framework (e.g., Wolf 2003; Muir 2005; Petfield et al. 2005;

Bergsma et al. 2008; Brommer and Rattiste 2008; Ellen et al.

2008; Wilson et al. 2009). Although measurements of M, �, or

their components could provide great insight into the complex

pattern of covariance among interacting phenotypes, only a few

studies have attempted to estimate these parameters (Schluter

and Gustafsson 1993; Roff 1998; Kent et al. 2008; Bleakley

and Brodie 2009). One potential reason for the paucity of such

measurements is that a generalized, easily applicable empirical

method has not yet been proposed. For example, the method sug-

gested by Lande and Price (1989) for measuring M relies on

differences between mother–offspring and father–offspring re-

gressions, and thus cannot be applied when parental phenotypes

are unavailable or when interactants are not parents and offspring

(i.e., it cannot be used to estimate �). Furthermore, the single

experimental approach developed specifically to measure � is

not generally applicable to most laboratory or natural populations

because it relies on testing with multiple inbred lines (Bleakley

and Brodie 2009).

A second reason that the trait-based estimates have been less

common is that connections between the two theoretical frame-

works are not immediately obvious. Whereas components of M
can be shown to be functions of empirically estimable variance

components (Lynch and Walsh 1998), thus demonstrating the

equivalence of the two frameworks, as of yet it has been un-

clear whether the generalized IGE models are also equivalent. An

apparent difficulty arises from the potential for feedback loops

that may occur when one trait affects itself in a social partner

or when two traits in different individuals reciprocally affect one

another (Moore et al. 1997; Kölliker et al. 2005). Such feedback is

modeled explicitly in the trait-based framework but appears only

implicitly in the variance-components framework.

In this article, we briefly summarize the trait-based and

variance-components approaches for modeling IGEs and demon-

strate that the two approaches are compatible. Models of � for

social interactions of more than two individuals are derived. We

then show that the equivalence between trait-based and variance-

components approaches leads to a statistical method for the esti-

mation of � or M, given an appropriate experimental design.

Models of IGEs
Moore et al. (1997) defined a phenotype in a focal individual (zi) as

the sum of its own additive genetic and environmental components

(ai and ei, respectively) as well as the phenotype of a social partner

(z′
j). Here, the prime denotes that the phenotype occurs in another

individual, and the subscript j denotes that it is a different trait

than trait i. This effect is scaled by the parameter ψij, which is a

regression coefficient describing the strength and direction of the

effect of trait j on trait i. The social phenotype may also be broken

down into heritable and environmental components, giving

zi = ai + ei + ψija
′
j + ψije

′
j . (1)

Following standard quantitative genetic theory, genetic and en-

vironmental effects are assumed to be uncorrelated, and envi-

ronmental effects are assumed to have zero mean (Falconer and
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MacKay 1996). In the case represented by equation (1), trait i does

not feed back upon trait j. If such feedback occurs, the definition

of zi is more complicated

zi = ai + ei + ψija
′
j + ψije

′
j

(1 − ψijψji)
. (2)

The denominator of equation (2) may be very small when there

is strong positive feedback (i.e., ψij and ψji have the same sign),

or very large when there is strong negative feedback (ψij and ψji

are of opposite sign).

Moore et al. (1997) calculate an individual’s total breeding

value (A) from its average effect on the population (Falconer and

MacKay 1996). When focal individuals also act as social partners,

their own social effect is included in their breeding value, thus,

Ai = ai + ψija j

(1 − ψijψji)
. (3)

Note the absence of the prime on the social trait, aj. This to-

tal breeding value can then be used to calculate the response to

selection (Moore et al. 1997).

In contrast, Griffing’s models do not attribute social effects to

a certain phenotype. Instead, they define a focal individual’s phe-

notype as a simple sum of direct and social components (Griffing

1967; Bijma et al. 2007a). Each of these components may be

decomposed into heritable and nonheritable components:

z = aD + eD + a′
S + e′

S, (4)

where subscripts D and S represent direct and social effects, re-

spectively. Again, primes are used to show that an effect derives

from the phenotype of a social partner on the focal individual.

Although this approach easily extends to multiple social partners,

we will initially concentrate on a single partner for simplicity and

to follow the approach of Moore et al. (1997), saving the treatment

of larger groups for a later section. As before, an individual’s total

breeding value, A, may be represented by the sum of its direct

breeding value and its own social breeding value,

A = aD + aS . (5)

In the absence of feedback, the analogy between the two frame-

works is clear. The direct breeding values and environmental val-

ues are identical, and aS = ψij a′
j. However, if feedback occurs, as

in equation (3), aD �= ai. Instead, it appears that aD = ai

(1−ψijψji)
.

Thus, depending on the signs and relative magnitudes of ψij and

ψji, an individual’s direct breeding value may be greater or less

than its additive genetic value. In turn, the social breeding value

for trait i appears to be aS = ψija j

(1−ψijψji)
.

The total amount of heritable variation in the population, or

the variance of total breeding values, can be calculated by taking

the expected variance of equation (5)

σ2
A = σ2

aD
+ 2σaDaS + σ2

aS
(6)

(Bijma et al. 2007a). In other words, the variance of total breeding

values is equal to the sum of the variances of direct and IGEs, as

well as twice the covariance between the two. Similarly, we can

calculate the same value in the trait-based framework by taking

the expected variance of equation (3)

σ2
Ai

= Gii + 2ψijGij + ψ2
ijGjj

(1 − ψijψji)2
. (7)

Here, G is used rather than σ2
a to emphasize that these values

are elements of the additive genetic variance-covariance matrix

G (Lande 1979; Moore et al. 1997).

Equation (7) suggests that even in the presence of feedback,

we should be able to partition the variance in total breeding val-

ues into components due to direct and IGEs, and the covariance

between the two, as in equation (6). Setting the components from

the right-hand sides of equations (6) and (7) equal to each other,

we find

σ2
aD

= Gii

(1 − ψijψji)2
(8a)

σaDaS
= ψijGij

(1 − ψijψji)2
(8b)

σ2
aS

= ψ2
ijGjj

(1 − ψijψji)2
. (8c)

Empirical Estimation of IGEs
THEORY

Because the components on the left-hand sides of equations (8a–c)

are estimable (Muir 2005; Bijma et al. 2007b), these relationships

immediately suggest that ψ coefficients should be estimable as a

function of these variance components. The simplest, univariate

case, where zi is only affected by itself, can be explored by setting

j = i in equations (8a–c). In this case,

ψii = σaDaS

σ2
aD

. (9)

However, this is probably an uncommon situation. To derive a

generalized method for measuring � and its components, we

must first expand both frameworks to incorporate multiple traits.

A multivariate version of the trait-based framework has been

derived by Moore et al. (1997), and here we briefly summa-

rize their results while deriving the multivariate version of the

variance-components model. Following Moore et al. (1997), we

define z as a column vector of phenotypic values and � as a

square matrix with elements ψij, or
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z = (I − ��)−1(a + e +�a′ + �e′) (10a)

In the variance-components framework,

z = aD + eD + a′
S + a′

S. (10b)

The vector of total breeding values A is then

A = (I − ��)−1(a + �a) (11a)

or

A = aD + aS. (11b)

Taking variances,

GA = (I − ��)−1(G + G�T + �G + �G�T)(I − �T�T)−1,

(12a)

where T denotes matrix transposition, or

GA = GD + GDS + GSD + GS (12b)

Additively partitioning GA, we can show that

GD = (I − ��)−1G(I − �T�T)−1 (13a)

GDS = (I − ��)−1G�T(I − �T�T)−1 (13b)

GSD = (I − ��)−1�G(I − �T�T)−1 (13c)

GS = (I − ��)−1�G�T(I − �T�T)−1. (13d)

From these equations, we can calculate

� = GSDG−1
D = (G−1

D GDS)T. (14)

This relationship is proved in the Appendix.

Note that the relationship described by equation (14) applies

equally well to maternally affected traits. If we assume no change

in the mean across generations and that maternal phenotypes are

not affected by offspring phenotypes (such as parental provision-

ing influenced by begging, Kölliker et al. 2005), it can be shown

that � can be replaced by M in equations (13) and (14). In the

maternal case, however, the multipliers (I −MM)−1 and (I −MT

MT)−1 arise not from feedback but rather from the accumulation

of maternal effects over multiple generations. Relaxation of these

assumptions is likely to introduce some difficulty into the model

(Kirkpatrick and Lande 1989; Kölliker et al. 2005).

Disappointingly, it cannot be proven mathematically that

this method of measuring M is equivalent to that introduced by

Lande and Price (1989). This is because the derivation of the ear-

lier method relies upon P, the phenotypic variance–covariance,

which cannot be defined explicitly in maternal effects theory

(Kirkpatrick and Lande 1989). Demonstrating equivalence be-

tween the two methods will have to await sufficient empirical

data.

Because the elements of � are regression coefficients, their

magnitudes will depend upon the means and variances of the

traits involved. For a single trait that affects itself, or for two

traits with identical direct genetic variances, the expected range

of ψ is between −1 and 1. However, when variances of the two

traits differ, the expected limits can be breached. To compare the

elements of � across studies and between traits within a study,

we recommend that each trait be standardized to zero mean and

unit variance prior to analysis so that standardized estimates of �

will be generated.

VALIDATION OF METHODOLOGY

To validate equations (9) and (14) numerically, we simulated

datasets with the desired parameters and then analyzed them us-

ing restricted maximum likelihood and an animal model (Kruuk

2004; Bijma et al. 2007b). First, we simulated base phenotypes

(i.e., phenotypes that were not affected by social interactions) us-

ing WOMBAT (Meyer 2006) and a two-generation pedigree. The

parental generation consisted of 100 sires and 200 dams. Each

sire was mated to two unique dams to produce 200 families of 10

offspring each (2000 total). In simulation 1, WOMBAT generated

phenotypic values for one trait with a mean of 0, genetic variance

of 0.3, and environmental variance of 0.7. Ten replicate popu-

lations were generated. In simulation 2, we simulated two traits

each with a mean of 0, genetic variance of 0.3, and environmental

variance of 0.7. Genetic and environmental covariance was set

equal to 0.1.

These base phenotypes and a range of values of ψ were then

used to calculate interacting phenotypes in the program ASReml

2.0 (Gilmour et al. 2006). First, each individual was randomly

paired with another individual from its own generation. Then,

phenotypic values were calculated using equation (10a). Each

pair was represented twice in each dataset, with each of the two

interactants acting as the focal individual. In simulation 1, we

varied ψ11 from −0.8 to 0.8 by increments of 0.2. In simulation

2, we varied ψ12 and ψ21, using the 15 unique combinations of

−0.6, −0.2, 0, 0.2, and 0.6.

We then used ASReml to perform a quantitative genetic anal-

ysis of these new phenotypic data. Using restricted maximum

likelihood and an animal model, phenotypic variance was par-

titioned into direct additive genetic and social additive genetic

components (GD and GS), covariance between direct and social

breeding values (GSD), environmental covariance between social

partners, and a residual component. Environmental covariance

was modeled by including a random environmental effect of pair.

The expected value for this component is
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Table 1. Predicted and observed variance/covariance components and interaction coefficient, ψ11, from one-trait simulation. No observed

components fell outside±3 SE of the predicted value.

Predicted Observed

ψ11 σ2
aD

σaDaS σ2
aS

ψ11 σ2
aD

σaDaS σ2
aS

−0.8 2.315 −1.852 1.481 −0.794 (0.007) 2.457 (0.136) −1.959 (0.121) 1.556 (0.109)
−0.6 0.732 −0.439 0.264 −0.601 (0.009) 0.807 (0.033) −0.487 (0.025) 0.288 (0.021)
−0.4 0.425 −0.170 0.068 −0.396 (0.011) 0.453 (0.021) −0.181 (0.013) 0.067 (0.011)
−0.2 0.326 −0.065 0.013 −0.207 (0.012) 0.347 (0.015) −0.072 (0.006) 0.009 (0.006)

0 0.300 0.000 0.000 −0.011 (0.012) 0.319 (0.013) −0.004 (0.004) −0.006 (0.005)
0.2 0.326 0.065 0.013 0.185 (0.011) 0.344 (0.013) 0.063 (0.004) 0.006 (0.005)
0.4 0.425 0.170 0.068 0.384 (0.011) 0.446 (0.017) 0.170 (0.007) 0.060 (0.007)
0.6 0.732 0.439 0.264 0.585 (0.009) 0.761 (0.028) 0.445 (0.018) 0.254 (0.015)
0.8 2.315 1.852 1.481 0.790 (0.006) 2.380 (0.089) 1.880 (0.074) 1.480 (0.066)

Epair = Cov[(I−��)−1(e + �e′), (e′T+eT�T)(I−�T�T)−1]

= (I−��)−1(�E + E�T)(I − �T�T)−1, (15)

where E is the variance–covariance matrix of environmental ef-

fects. Including this covariance term controls for indirect envi-

ronmental effects that are mediated by social interactions (Bijma

et al. 2007b). In an experimental situation, this term would also

control for sources of common environmental influence on the

members of a pair. Because this matrix consists entirely of co-

variances, the diagonal terms were allowed to take on negative

values. Using equation (A6) of Moore et al. (1997) for the pheno-

typic variance–covariance matrix P, the expected residual term is

Table 2. Predicted and observed direct genetic variance–covariance matrices from two-trait simulation. No observed components fell

outside±3 SE of the predicted value.

Predicted Observed

ψ12, ψ21 GD (1,1) GD (1,2) GD (2,2) GD (1,1) GD (1,2) GD (2,2)

−0.6, −0.6 0.732 0.244 0.732 0.782 (0.042) 0.245 (0.027) 0.720 (0.033)
−0.6, −0.2 0.387 0.129 0.387 0.415 (0.022) 0.127 (0.013) 0.382 (0.017)
−0.6, 0 0.300 0.100 0.300 0.321 (0.017) 0.097 (0.010) 0.296 (0.014)
−0.6, 0.2 0.239 0.080 0.239 0.256 (0.013) 0.076 (0.007) 0.235 (0.011)
−0.2, −0.2 0.326 0.109 0.326 0.345 (0.014) 0.105 (0.010) 0.323 (0.014)
−0.2, 0 0.300 0.100 0.300 0.320 (0.013) 0.096 (0.009) 0.297 (0.014)

0, 0 0.300 0.100 0.300 0.319 (0.012) 0.095 (0.009) 0.297 (0.014)
0.2, −0.2 0.277 0.092 0.277 0.289 (0.012) 0.089 (0.009) 0.275 (0.012)
0.2, 0 0.300 0.100 0.300 0.313 (0.013) 0.095 (0.009) 0.297 (0.014)
0.2, 0.2 0.326 0.109 0.326 0.339 (0.014) 0.102 (0.009) 0.321 (0.016)
0.6, −0.6 0.162 0.054 0.162 0.162 (0.009) 0.051 (0.006) 0.159 (0.007)
0.6, −0.2 0.239 0.079 0.239 0.239 (0.014) 0.074 (0.008) 0.236 (0.010)
0.6, 0 0.300 0.100 0.300 0.299 (0.017) 0.093 (0.010) 0.296 (0.014)
0.6, 0.2 0.387 0.129 0.387 0.386 (0.022) 0.120 (0.012) 0.381 (0.019)
0.6, 0.6 0.732 0.244 0.732 0.728 (0.044) 0.223 (0.023) 0.713 (0.042)

R = (I − ��)−1(E + �E�T − �E − E�T)(I − �T�T)−1.

(16)

Genetic variance components in the model were compared to

their expected values generated by equations (13a–d). We then

compared calculated values of ψ11 or � from equation (9) or

(14), and compared these values with those used to generate the

data.

Analysis of both simulations produced accurate, unbiased

estimates of genetic variance components (Tables 1–4). In only

three cases did the predicted value of a parameter fall outside ±
3 SE of the mean estimate. Equations (9) and (14) also produced

accurate and unbiased estimates of ψ11 and � (Tables 1 and

5). In simulation 1, predicted and calculated ψ11 were highly
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Table 3. Predicted and observed social-direct genetic covariance matrices from two-trait simulation. One observed component, indicated

by an asterisk, fell outside±3 SE of the predicted value.

Predicted Observed

ψ12, ψ21 GSD (1,1) GSD (1,2) GSD (2,1) GSD (2,2) GSD (1,1) GSD (1,2) GSD (2,1) GSD (2,2)

−0.6, −0.6 −0.146 −0.439 −0.439 −0.146 −0.156 (0.021) −0.428 (0.023) −0.473 (0.033) −0.152 (0.021)
−0.6, −0.2 −0.077 −0.232 −0.077 −0.026 −0.082 (0.011) −0.230 (0.011) −0.086 (0.010) −0.028 (0.008)
−0.6, 0 −0.060 −0.180 0.000 0.000 −0.064 (0.009) −0.179 (0.008) −0.003 (0.006) −0.002 (0.006)
−0.6, 0.2 −0.048 −0.143 0.048 0.016 −0.051 (0.007) −0.144 (0.006) 0.049 (0.005) 0.014 (0.005)
−0.2, −0.2 −0.022 −0.065 −0.065 −0.022 −0.026 (0.006) −0.066 (0.006) −0.076 (0.007) −0.023 (0.007)
−0.2, 0 −0.020 −0.060 0.000 0.000 −0.024 (0.005) −0.062 (0.005) −0.007 (0.005) −0.002 (0.006)

0, 0 0.000 0.000 0.000 0.000 −0.004 (0.004) −0.002 (0.005) −0.008 (0.005) −0.002 (0.006)
0.2, −0.2 0.018 0.055 −0.055 −0.018 0.014 (0.003) 0.056 (0.006) −0.067 (0.005) −0.020 (0.006)
0.2, 0 0.020 0.060 0.000 0.000 0.016 (0.003) 0.059 (0.007) −0.010 (0.005) −0.002 (0.004)
0.2, 0.2 0.022 0.065 0.065 0.022 0.017 (0.003) 0.062 (0.007) 0.058 (0.006) 0.019 (0.007)
0.6, −0.6 0.032 0.097 −0.097 −0.032 0.029 (0.003) 0.098 (0.005) −0.107 (0.005) −0.033 (0.004)
0.6, −0.2 0.048 0.143 −0.048 −0.016 0.043 (0.004) 0.142 (0.008) −0.060 (0.004)∗ −0.018 (0.005)
0.6, 0 0.060 0.180 0.000 0.000 0.054 (0.006) 0.177 (0.011) −0.014 (0.005) 0.002 (0.006)
0.6, 0.2 0.077 0.232 0.077 0.026 0.069 (0.007) 0.227 (0.015) 0.062 (0.009) 0.022 (0.008)
0.6, 0.6 0.146 0.439 0.439 0.146 0.130 (0.013) 0.422 (0.033) 0.415 (0.032) 0.132 (0.021)

correlated (r = 0.998, Fig. 1). Calculated values of ψij generated

in simulation 2 were less precise, but still highly correlated with

predicted values (r = 0.979, Fig. 2).

Extension to Larger Groups
Although the variance-components model of IGEs has been de-

rived for groups of any size, the trait-based model of Moore et al.

(1997) considers only pairs of individuals. However, there are

Table 4. Predicted and observed social genetic variance-covariance matrices from two-trait simulation. Two observed components,

indicated by asterisks, fell outside±3 SE of the predicted value.

Predicted Observed

ψ12, ψ21 GS (1,1) GS (1,2) GS (2,2) GS (1,1) GS (1,2) GS (2,2)

−0.6, −0.6 0.264 0.088 0.264 0.248 (0.020) 0.099 (0.017) 0.278 (0.027)
−0.6, −0.2 0.139 0.015 0.015 0.132 (0.010) 0.020 (0.007) 0.010 (0.006)
−0.6, 0 0.108 0.000 0.000 0.102 (0.008) 0.003 (0.005) −0.008 (0.003)
−0.6, 0.2 0.086 −0.010 0.010 0.082 (0.006) −0.007 (0.004) 0.002 (0.003)∗

−0.2, −0.2 0.013 0.004 0.013 0.008 (0.005) 0.008 (0.005) 0.010 (0.005)
−0.2, 0 0.012 0.000 0.000 0.007 (0.005) 0.003 (0.004) −0.007 (0.003)

0, 0 0.000 0.000 0.000 −0.006 (0.005) 0.002 (0.004) −0.007 (0.003)
0.2, −0.2 0.011 −0.004 0.011 0.006 (0.005) −0.001 (0.004) 0.008 (0.004)
0.2, 0 0.012 0.000 0.000 0.006 (0.006) 0.002 (0.004) −0.007 (0.003)
0.2, 0.2 0.013 0.004 0.013 0.007 (0.006) 0.005 (0.005) 0.003 (0.003)∗

0.6, −0.6 0.058 −0.019 0.058 0.055 (0.006) −0.017 (0.003) 0.063 (0.005)
0.6, −0.2 0.086 −0.010 0.010 0.081 (0.009) −0.007 (0.005) 0.008 (0.003)
0.6, 0 0.108 0.000 0.000 0.102 (0.012) 0.007 (0.006) −0.007 (0.003)
0.6, 0.2 0.139 0.015 0.015 0. 131(0.015) 0.015 (0.008) 0.002 (0.005)
0.6, 0.6 0.264 0.088 0.264 0.244 (0.028) 0.080 (0.015) 0.229 (0.005)

many cases in which exploring trait-based interactions in larger

groups may be of interest. For example, advertising males may

adjust their display behavior based on the displays of a num-

ber of neighboring males, siblings within a nest may compete

for resources, or aggregations of insect larvae may affect the an-

tipredator response of individuals. To account for such cases here,

we expand the trait-based model to include multiple social part-

ners. We also show that our experimental method to measure �

can be applied to larger groups.
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Table 5. Predicted and observed interaction matrix, �, from two-trait simulation. No observed components fell outside±3 SE of the

predicted value.

Predicted Observed

ψ11 ψ12 ψ21 ψ22 ψ11 ψ12 ψ21 ψ22

0 −0.6 −0.6 0 −0.015 (0.010) −0.586 (0.012) −0.598 (0.012) −0.004 (0.009)
0 −0.6 −0.2 0 −0.015 (0.015) −0.595 (0.017) −0.199 (0.016) −0.004 (0.011)
0 −0.6 0 0 −0.014 (0.018) −0.602 (0.021) −0.0001 (0.018) −0.004 (0.014)
0 −0.6 0.2 0 −0.011 (0.021) −0.613 (0.026) 0.199 (0.020) −0.003 (0.016)
0 −0.2 −0.2 0 −0.013 (0.014) −0.198 (0.018) −0.219 (0.015) 0.0004 (0.014)
0 −0.2 0 0 −0.011 (0.015) −0.205 (0.019) −0.020 (0.016) 0.001 (0.015)
0 0 0 0 −0.010 (0.014) −0.003 (0.020) −0.028 (0.015) 0.003 (0.015)
0 0.2 −0.2 0 −0.012 (0.014) 0.206 (0.020) −0.237 (0.017) 0.003 (0.016)
0 0.2 0 0 −0.009 (0.014) 0.199 (0.020) −0.035 (0.016) 0.004 (0.016)
0 0.2 0.2 0 −0.007 (0.014) 0.192 (0.021) 0.165 (0.014) 0.005 (0.016)
0 0.6 −0.6 0 −0.027 (0.028) 0.630 (0.032) −0.683 (0.036) 0.006 (0.025)
0 0.6 −0.2 0 −0.015 (0.021) 0.609 (0.023) −0.268 (0.028) 0.007 (0.019)
0 0.6 0 0 −0.011 (0.018) 0.601 (0.021) −0.062 (0.025) 0.007 (0.017)
0 0.6 0.2 0 −0.007 (0.015) 0.595 (0.019) 0.144 (0.021) 0.007 (0.015)
0 0.6 0.6 0 −0.002 (0.011) 0.585 (0.018) 0.558 (0.016) 0.006 (0.012)

Following Griffing (1967) and Bijma et al. (2007a), we as-

sume that the population of interest is subdivided into a number

of distinct groups. For simplicity, we assume that all groups are

of the same size, all interactions occur only within these groups,

and that within groups, all possible interactions between group

members occur simultaneously and with equal strength. As in the

variance-components model, the phenotype of a focal individual

is partitioned into a direct genetic component, a direct residual

Figure 1. Predicted and observed interaction coefficients, ψ11,

from one-trait simulation.

component, and the sum of the social effects of all the members

of its group,

z = a + e + (n − 1)� z̄′, (17)

where z̄′ represents the mean phenotype of the focal individual’s

social partners and n represents the group size (i.e., the focal

individual plus the number of social partners). Note that as defined

here, � represents the strength of each interaction between two

individuals in a group. If one wished to measure the strength of

an interaction between one individual and the rest of its group, a

new variable could be defined such that

�group = (n − 1)� (18)

This identity can be used to transform the following derivation

so that group-level interactions will be measured. A graphical

depiction of the difference between � and � group is provided in

Figure 3. In some cases, the � group formulation may be desirable

because it more accurately describes the dynamics of the interac-

tion. For instance, it may be easier to describe the behavior of a

single fish as affected by an emergent property of its school.

The expression of traits in the social partners will be affected

by their interaction with the focal individual as well as with the

other group members. Thus, we can define the vector of social

partner phenotypes as

Z′i = a′i+e′i + (n − 1)� z̄′ − � z̄′ i + �z, (19)

where the superscript i indicates an individual social partner. The

last two terms in equation (19) demonstrate that each social partner
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Figure 2. Predicted and observed interaction coefficients, ψ ij ,

from two-trait simulation.

interacts with the focal individual from equation (17), but not with

itself. We can solve for z̄′ by taking the expectation of equation

(19),

z̄′ = ā′ + ē′ + (n − 1)� z̄′ − � z̄′ + �z.

Simplifying,

z̄′ = ā′ + ē′ + (n − 2)� z̄′ + �z

and

z̄′ = [I − (n − 2)�]−1[ā′ + ē′ + �z], (20)

we can now solve for an explicit definition of z by substituting

equation (20) into equation (17),

z = a + e + (n − 1)�[I − (n − 2)�]−1[ā′ + ē′ + �z]

z = [I − (n − 1)�[I − (n − 2)�]−1�]−1

· [a + e + (n − 1)�[I − (n − 2)�]−1(ā′ + ē′)]. (21)

To simplify notation, we write

U = I − (n − 1)�[I − (n − 2)�]−1� (22a)

V = I − (n − 2)� (22b)

z = U−1[a + e + (n − 1)�V−1(ā′ + ē′)] (22c)

Figure 3. In the model for IGEs in groups larger than 2, it is as-

sumed that all interactions occur symmetrically and simultane-

ously between group members. These illustrations depict groups

of n = 3. (A) Here, interactions are depicted as occurring between

individuals of the group. The arbitrarily chosen focal individual

is shown outside the ellipse. The focal individual’s traits (z) are

affected directly by the traits of its social partners (z′) within the

ellipse as well indirectly by the interactions among these social

partners. The strength of each individual interaction is measured

by � (as shown in eq. 17). (B) Equivalently, this situation can be de-

picted as a single interaction between a focal individual’s traits and

the average trait values of its social group (z̄′). Here, the strength

of the interaction is measured by �group , which is equal to (n −
1)� (eq. 18). In this formulation, interactions among individuals

within the social group are implicit.

Then, from the expectation across all social groups, we can find

the total breeding value of the focal individual,

A = U−1[a + (n − 1)�V−1a]. (23)

To measure �, we must partition A into its components as before,

aD = U−1a (24a)

(n − 1)aS = U−1(n − 1)�V−1a

aS = U−1�V−1a. (24b)
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Taking variances of equations (23a–b) and the covariance be-

tween them, we find that the variance components estimated by

an animal model are

GD = U−1G(UT)−1 (25a)

GDS = U−1G(VT)−1�T(UT)−1 (25b)

GSD = U−1�V−1G(UT)−1 (25c)

GS = U−1�V−1G(VT)−1�T(UT)−1. (25d)

From these identities, it can be shown that:

� = GSD[GD + (n − 2)G−1
SD]. (26)

A proof is given in the Appendix.

Equation 26 suggests that the maximum absolute value of

the components of � should decrease as group size increases.

However, note that by equation (18), the total strength of the

group interaction, � group, still has the potential to be large.

It must be noted here that the equations derived in this section

are precisely applicable only to populations that fit the assump-

tions discussed above. Although these assumptions are generally

met in experimental designs used to measure IGEs (Bijma et al.

2007b; Bleakley and Brodie 2009), the relationships derived here

should be applied with caution elsewhere. One major compli-

cation is that in natural populations, patterns of interaction may

be complex, and “groups” may be difficult to define. Social net-

work analysis may be used to assist in the description of these

patterns (Wey et al. 2008), but this complexity has not yet been

incorporated into quantitative genetic models.

Furthermore, measurements of � or � group are specific to

a given group size and do not translate to parameters for groups

of different sizes. One reason this is true is that as group size

increases, any given individual’s effect on its group members will

be more diffuse. Under our assumptions, this means that the max-

imum covariance between any two individuals in the group will

decrease with group size, leading to differences in observed �

with group size. Another reason is that observed � depends not

only upon direct interactions between a given focal individual and

its n − 1 social partners, but also upon the indirect effects of in-

teractions among the social partners (Fig. 3A). As n increases, the

number of interactions between pairs of group members increases

by n!/(n − 2)!, and each of these interactions is expected to have

a smaller effect on the phenotype of a given group member. It is

possible that an extension of the theory presented here, in combi-

nation with statistical methods described by Hadfield and Wilson

(2007), may be used to examine the effects of variation in group

size on �.

Discussion
We have shown that the two major IGE models provide equivalent

results, and that the relationships between the two can be used to

estimate the matrix � (eqs. 9, 14, and 26), which measures the

strength of IGEs in the framework of Moore et al. (1997). By

extension, our methods are also applicable to the maternal effects

matrix M (Kirkpatrick and Lande 1989). Although both theoret-

ical frameworks can be used to provide evolutionary predictions,

as we will demonstrate elsewhere (J. W. McGlothlin and E. D.

Brodie III, unpubl. ms.), measurements of � and M are crucial for

dissecting the potentially complex pattern of covariance among

interacting phenotypes. Similar to selection gradients, these mea-

surements may be used to generate hypotheses guiding the design

of further experiments (Lande and Arnold 1983; Wade and Kalisz

1990).

The direct and indirect components of variance in breeding

values that are necessary to estimate interaction coefficients, �,

are readily estimable with available statistical programs. Many

large-scale quantitative genetic studies, both from laboratory and

natural populations, are likely to fit the requirements for esti-

mating IGEs, which are thoroughly discussed by Bijma et al.

(2007b). The primary criteria are the abilities to distinguish addi-

tive genetic variance and to separate direct from indirect genetic

variance. Most paternal half-sibling breeding designs or multi-

generational pedigree can be used to accomplish these goals. For

studies of maternal effects, achieving the second criteria is more

delicate, often requiring extra generations or complicated cross-

fostering schemes to separate maternal and direct genetic effects

(Cheverud and Moore 1994; Lynch and Walsh 1998). However,

studies of IGEs that occur within a generation and/or between

unrelated individuals are less complicated. Here, designs must

simply include pairs or groups of interacting individuals that are

assigned (or occur in nature) at random, or nearly so (Bijma et al.

2007b). It is important to note that there need be no special dis-

tinction between “focal individuals” and “social partners” in these

experiments. What is important is that both members of a pair (or

all members of a group) have known pedigrees.

Most studies measuring IGEs have concentrated on a single

phenotype, such as body size (Wolf 2003) or have measured mul-

tiple traits but considered them separately (Wilson et al. 2009).

However, to estimate �, all traits must be considered together in a

multivariate analysis. The reason behind this is simple. When two

traits interact with each other, that is, when ψ12 and ψ21 are not

equal to zero, the covariances Cov(aD1, aS2) and Cov(aD2, aS1) are

both likely to be large, whereas the covariances Cov(aD1, aS1) and

Cov(aD2, aS2) may be equal to zero if there is no additive genetic

correlation between the traits. Univariate analyses measure only

the latter pair of covariances, and thus may fail to detect evidence

for IGEs even when strong IGEs are present.
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IGEs are expected to play a substantial role in the evolution of

all traits involved in interactions among conspecifics, from com-

petitive ability in plants to aggression and dominance in animal

societies (Moore et al. 1997; Wolf et al. 1998). Furthermore, IGEs

are expected to be a key to understanding multilevel selection and

the evolution of social interactions among nonrelatives (Griffing

1967, 1981; Muir 1996; Wolf et al. 1999; Bijma et al. 2007a; Bijma

and Wade 2008; Bleakley and Brodie 2009). In many cases, the

key questions hinge upon the sign and magnitude of interaction

coefficients and the direct-social covariances of specific trait com-

binations. Unfortunately, the empirical study of IGEs has lagged

behind theory, due to both the difficulty of collecting data and the

lack of a statistically clear estimation approach. The translation

of readily estimable direct and social variance components to pa-

rameters in trait-based phenotypic models presented here should

provide the route for the expansion of our empirical understanding

of the importance of IGEs in natural systems.
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Appendix
PROOFS

To prove equation (14), we substitute equations (13a) and (13c)

for GSD and GD.

� = (I − ��)−1�G(I − �T�T)−1

· [(I − ��)−1G(I − �T�T)−1]−1

� = (I − ��)−1�G(I − �T�T)−1(I − �T�T)G−1(I − ��)

� = (I − ��)−1�(I − ��)

� = (I − ��)−1(� − ���)

� = (I − ��)−1(I − ��)�

� = �.

Similarly, to prove equation (26), we substitute equations (25a)

and (25c) for GSD and GD.

� = U−1�V−1G(UT)−1[U−1G(UT)−1

+ (n − 2)U−1�V−1G(UT)−1]−1

� = U−1�V−1[U−1 + (n − 2)U−1�V−1]−1

� = U−1�V−1[I + (n − 2)�V−1]−1U

� = U−1�[V + (n − 2)�]−1U

� = U−1�[I − (n − 2)� + (n − 2)�]−1U

� = U−1�U

� = U−1�[I − (n − 1)�[I − (n − 2)�]−1�]

� = U−1[� − (n − 1)��[I−(n − 2)�]−1�]

� = U−1[I − (n − 1)��[I − (n − 2)�]−1]�

� = U−1[I − (n − 1)�[�−1 − (n − 2)I]−1]�

� = U−1U�

� = �.

EVOLUTION JULY 2009 1 7 9 5



ERRATUM

doi:10.1111/j.1558-5646.2010.01166.x

Correction for McGlothlin and Brodie (2009)
An equation was misprinted in our recent paper on measuring indirect genetic effects (McGlothlin and Brodie 2009). Equation (26)

should read as follows:

� = GSD[GD + (n − 2)GSD]−1
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